cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A066729 a(n) = Product_{d|n, d

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 144, 13, 14, 15, 64, 17, 324, 19, 400, 21, 22, 23, 13824, 5, 26, 27, 784, 29, 27000, 31, 1024, 33, 34, 35, 279936, 37, 38, 39, 64000, 41, 74088, 43, 1936, 2025, 46, 47, 5308416, 7, 2500, 51, 2704, 53, 157464, 55, 175616, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 15 2002

Keywords

Comments

a(n) = n if n is prime, otherwise a(n) = A007956(n);
a(A084116(n)) = A084116(n).

Crossrefs

Programs

  • Haskell
    a066729 n = if pds == [1] then n else product pds
                where pds = a027751_row n
    -- Reinhard Zumkeller, Jul 31 2014
    
  • Mathematica
    a[1] = 1; a[n_ /; PrimeQ[n]] := n; a[n_] := Times @@ Most[Divisors[n]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, May 28 2015 *)
    Table[If[CompositeQ[n],Times@@Most[Divisors[n]],n],{n,60}] (* Harvey P. Dale, Jun 24 2016 *)
  • PARI
    a(n) = my(pd = vecprod(divisors(n))); if (isprime(n), pd, pd/n); \\ Michel Marcus, Jan 09 2021

Formula

a(n) = n^c(n) * ( Product_{d|n, dA010051). - Wesley Ivan Hurt, Jan 10 2021

Extensions

Revised and data corrected by Reinhard Zumkeller, Jul 31 2014

A048753 Composite numbers k whose product of aliquot divisors divided by number of aliquot divisors is an integer.

Original entry on oeis.org

4, 6, 15, 16, 20, 21, 27, 33, 36, 39, 42, 45, 48, 50, 51, 56, 57, 69, 70, 75, 87, 93, 100, 105, 111, 120, 123, 129, 132, 141, 154, 159, 162, 175, 177, 182, 183, 189, 196, 198, 201, 210, 213, 219, 220, 231, 237, 238, 245, 249, 256, 266, 267, 270, 273, 275, 291
Offset: 1

Views

Author

Keywords

Examples

			For k=6, the product of aliquot divisors is 3*2*1=6; the number of aliquot divisors is 3; 6/3 = 2 (an integer), so 6 is a term.
		

Crossrefs

Programs

  • Mathematica
    padQ[n_]:=Module[{ad=Most[Divisors[n]]},!PrimeQ[n]&&Divisible[Times@@ad, Length[ad]]]; Select[Range[2,300],padQ] (* Harvey P. Dale, May 07 2012 *)

A048754 Mean integral quotients associated with A048753.

Original entry on oeis.org

1, 2, 5, 16, 80, 7, 9, 11, 34992, 13, 10584, 405, 589824, 500, 17, 25088, 19, 23, 49000, 1125, 29, 31, 1250000, 165375, 37, 23887872000000, 41, 43, 3643149312, 47, 521752, 53, 76527504, 6125, 59, 861224, 61, 964467, 13176688, 27665165088, 67
Offset: 1

Views

Author

Keywords

Examples

			a(6)=21, n=21; quotient of product of aliquot divisors divided by number of aliquot divisors is 7 (aliquot divisors of 21 = 1*3*7 and 21/3 divisors = 7). Since 7 is integral, add to sequence.
		

Crossrefs

Formula

a(n) = A007956(A048753(n))/A032741(A048753(n)). - Amiram Eldar, Sep 06 2019

Extensions

Offset corrected by Amiram Eldar, Sep 06 2019

A064499 Composite numbers n such that product of aliquot divisors of n is a perfect square.

Original entry on oeis.org

12, 16, 18, 20, 28, 32, 44, 45, 48, 50, 52, 63, 68, 75, 76, 80, 81, 92, 98, 99, 112, 116, 117, 124, 147, 148, 153, 162, 164, 171, 172, 175, 176, 180, 188, 192, 207, 208, 212, 236, 242, 243, 244, 245, 252, 256, 261, 268, 272, 275, 279, 284, 288, 292, 300, 304
Offset: 1

Views

Author

Robert G. Wilson v, Oct 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ If[ !PrimeQ[n] && IntegerQ[ Sqrt[ Apply[ Times, Delete[ Divisors[n], -1]]]], Print[n]], {n, 2, 500} ]
  • PARI
    pad(n)=my(d=divisors(n), p=1); for (i=1, #d-1, p*=d[i]); p
    n=0; for (m=2, 10^9, if (!isprime(m) && issquare(pad(m)), write("b064499.txt", n++, " ", m); if (n==1000, break))) \\ Harry J. Smith, Sep 16 2009
    
  • PARI
    is(n)=!isprime(n) && (ispower(n,4) || numdiv(n)%4==2) && n>1 \\ Charles R Greathouse IV, Oct 17 2015

A229970 Numbers n such that the product of their proper divisors is a palindrome > 1 and not equal to n.

Original entry on oeis.org

4, 9, 25, 49, 121, 212, 1001, 2636, 10201, 17161, 22801, 32761, 36481, 97969, 110011, 124609, 139129, 146689, 528529, 573049, 619369, 635209, 844561, 863041, 1100011, 10100101, 11000011, 101000101, 106110601, 110000011, 110271001, 112381201, 127938721, 130210921
Offset: 1

Views

Author

Derek Orr, Oct 04 2013

Keywords

Comments

Since the product of proper divisors must be > 1, these terms are necessarily composite. - Derek Orr, Apr 05 2015

Examples

			The product of the proper divisors of 2636 is 6948496 (a palindrome). So, 2636 is a member of this sequence.
The product of the proper divisors of 8 is 8 (a palindrome) but equal to 8. So 8 is not in this sequence.
		

Crossrefs

Cf. A007956.

Programs

  • Maple
    isA002113 := proc(n)
        dgs := convert(n,base,10) ;
        for i from 1 to nops(dgs)/2 do
            if op(i,dgs) <> op(-i,dgs) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for n from 4 do
        if not isprime(n) then
            ppd := A007956(n) ;
            if n <> ppd and isA002113(ppd) then
                printf("%d,",n);
            end if;
        end if;
    end do: # R. J. Mathar, Oct 09 2013
  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; fQ[n_] := Block[{s = Times @@ Most@ Divisors@ n}, And[palQ@s, s > 1, s != n]]; Select[Range@ 1000000, CompositeQ@ # && fQ@ # &] (* Michael De Vlieger, Apr 06 2015 *)
  • PARI
    ispal(n)=Vecrev(n=digits(n))==n
    is(n)=my(k=if(issquare(n,&k),k^numdiv(n)/n,n^(numdiv(n)/2-1))); k!=n && k>1 && ispal(k) \\ Charles R Greathouse IV, Oct 09 2013
    
  • PARI
    pal(n)=d=digits(n);Vecrev(d)==d
    for(n=1,10^6,D=divisors(n);p=prod(i=1,#D-1,D[i]);if(pal(p)&&p-1&&p-n,print1(n,", "))) \\ Derek Orr, Apr 05 2015
  • Python
    from sympy import divisors
    def PD(n):
      p = 1
      for i in divisors(n):
        if i != n:
          p *= i
      return p
    def pal(n):
      r = ''
      for i in str(n):
        r = i + r
      return r == str(n)
    {print(n, end=', ') for n in range(1, 10**4) if pal(PD(n)) and (PD(n)-1) and PD(n)-n}
    ## Simplified by Derek Orr, Apr 05 2015
    

Extensions

a(14)-a(18) from R. J. Mathar, Oct 09 2013
a(19)-a(34) from Charles R Greathouse IV, Oct 09 2013
Definition edited by Derek Orr, Apr 05 2015

A229972 Nonprime numbers whose product of proper divisors is a perfect cube.

Original entry on oeis.org

1, 8, 16, 24, 27, 30, 40, 42, 54, 56, 64, 66, 70, 78, 81, 88, 102, 104, 105, 110, 114, 125, 128, 130, 135, 136, 138, 152, 154, 165, 170, 174, 182, 184, 186, 189, 190, 192, 195, 216, 222, 230, 231, 232, 238, 240, 246, 248, 250, 255, 258, 266, 273, 282, 285
Offset: 1

Views

Author

Derek Orr, Oct 04 2013

Keywords

Comments

A nonprime number m is a term if and only if m is a cube or the number of divisors of m is of the form 3k+2. - Chai Wah Wu, Mar 09 2016

Examples

			The set of proper divisors of 8 is {1,2,4} and 1*2*4 = 2^3 so 8 is in the sequence.
		

Crossrefs

Cf. A007956.
Union of A000578 and (intersection of A002808 and A211338).

Programs

  • Mathematica
    Select[Range[343],!PrimeQ[#]&&IntegerQ[(Apply[Times,Divisors[#]]/#)^(1/3)]&] (* Farideh Firoozbakht Oct 10 2013 *)
    Select[Range[300],!PrimeQ[#]&&IntegerQ[Surd[Times@@Most[Divisors[ #]],3]]&] (* Harvey P. Dale, Oct 24 2017 *)
    m = 7; Union[Range[m]^3, Select[Range[m^3], !PrimeQ[#] && Mod[DivisorSigma[0, #], 3] == 2 &]] (* Amiram Eldar, Jul 07 2022 *)
  • PARI
    for(n=1,10^3,d=divisors(n);p=prod(i=1,#d-1,d[i]);if(p!=1&&ispower(p,3),print1(n,", ")))
    
  • Python
    from gmpy2 import iroot
    from sympy import divisor_count, isprime
    A229972_list = [i for i in range(1,10**3) if not isprime(i) and (iroot(i,3)[1] or divisor_count(i) % 3 == 2)] # Chai Wah Wu, Mar 10 2016

Extensions

Corrected and edited by Farideh Firoozbakht Oct 10 2013

A290480 Product of proper unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 27000, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 74088, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 216000, 1, 62, 63, 1, 65, 287496, 1, 68, 69, 343000, 1, 72, 1, 74, 75, 76, 77, 474552, 1, 80
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 03 2017

Keywords

Examples

			a(12) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 3 are proper unitary {1, 3, 4} and 1*3*4 = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> mul(d, d=select(x-> igcd(x, n/x)=1, divisors(n) minus {n})):
    seq(a(n), n=1..80);  # Alois P. Heinz, Aug 03 2017
  • Mathematica
    Table[Product[d, {d, Select[Divisors[n], GCD[#, n/#] == 1 &]}]/n, {n, 80}]
    Table[n^(2^(PrimeNu[n] - 1) - 1), {n, 80}]
  • PARI
    A290480(n) = if(1==n,n,n^(2^(omega(n)-1)-1)); \\ Antti Karttunen, Aug 06 2018
  • Python
    from sympy import divisors, gcd, prod
    def a(n): return prod(d for d in divisors(n) if gcd(d, n//d) == 1)//n
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 04 2017
    

Formula

a(n) = A061537(n)/n.
a(n) = n^(2^(omega(n)-1)-1), where omega() is the number of distinct primes dividing n (A001221).
a(n) = 1 if n is a prime power.

A339793 a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that is a multiple of s(a(n-1)), the sum of the proper divisors of a(n-1).

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 16, 15, 9, 8, 7, 5, 10, 24, 36, 55, 17, 11, 13, 14, 20, 22, 28, 56, 64, 63, 41, 18, 21, 33, 30, 42, 54, 66, 78, 90, 144, 259, 45, 99, 57, 23, 19, 25, 48, 76, 128, 127, 26, 32, 31, 27, 39, 34, 40, 50, 43, 29, 35, 52, 46, 104, 106, 112, 136, 134, 70, 74, 80, 212, 166, 86, 92, 152
Offset: 1

Views

Author

Scott R. Shannon, Dec 17 2020

Keywords

Comments

The sequence is possibly a permutation of the positive integers as when a(n-1) is prime a(n) will be the next smallest number that has not previously occurred. However this will depend on the likelihood of a(n) being a prime as n goes to infinity. For the first 478 terms the last prime is a(144) = 59, while a(478) = 19140499834691254267668, indicating prime values become increasingly rare, and could potentially have a finite number as n->infinity.
The sum of the proper divisors of n is given by A001065(n).

Examples

			a(3) = 3 as s(a(2)) = s(2) = 1, and 3 is the smallest multiple of 1 that has not previously occurred.
a(5) = 6 as s(a(4)) = s(4) = 3, and as 3 has already occurred the next lowest multiple is used, being 6.
a(12) = 5 as s(a(11)) = s(7) = 1, and 5 is the smallest multiple of 1 that has not previously occurred.
		

Crossrefs

Programs

  • Python
    from sympy import divisors
    def s(k): return sum(d for d in divisors(k)[:-1])
    def aupto(n):
      alst, aset = [1, 2], {1, 2}
      for k in range(2, n):
        ak = sanm1 = s(alst[-1])
        while ak in aset: ak += sanm1
        alst.append(ak); aset.add(ak)
      return alst     # use alst[n-1] for a(n)
    print(aupto(478)) # Michael S. Branicky, Dec 29 2020

A375960 Numbers whose product of proper divisors is a cube.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 13, 16, 17, 19, 23, 24, 27, 29, 30, 31, 37, 40, 41, 42, 43, 47, 53, 54, 56, 59, 61, 64, 66, 67, 70, 71, 73, 78, 79, 81, 83, 88, 89, 97, 101, 102, 103, 104, 105, 107, 109, 110, 113, 114, 125, 127, 128, 130, 131, 135, 136, 137, 138, 139, 149
Offset: 1

Views

Author

Stefano Spezia, Sep 04 2024

Keywords

Comments

Wells erroneously writes that the smallest number on this list should be 24.
All the primes are in this list since they have the only proper divisor 1 which is trivially a cube.

Examples

			16 is a term since 1*2*4*8 = 64 = 4^3.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 101.

Crossrefs

Cf. A000040 (subsequence), A000578, A007956, A027751, A032741.
Complement of A375962.

Programs

  • Mathematica
    Select[Range[150],IntegerQ[Product[Part[Divisors[#],i],{i,DivisorSigma[0,#]-1}]^(1/3)] &]
  • PARI
    isok(k) = my(d=divisors(k)); ispower(vecprod(Vec(d, #d-1)), 3); \\ Michel Marcus, Sep 04 2024

A375962 Numbers whose product of proper divisors is not a cube.

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 25, 26, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 49, 50, 51, 52, 55, 57, 58, 60, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 106, 108, 111, 112, 115, 116, 117, 118, 119, 120
Offset: 1

Views

Author

Stefano Spezia, Sep 04 2024

Keywords

Comments

All the terms are composites.

Examples

			28 is a term since 1*2*4*7*14 = 784 is not a cube.
		

Crossrefs

Cf. A000578, A002808 (supersequence), A007956, A027751, A032741.
Complement of A375960.

Programs

  • Mathematica
    Select[Range[120], !IntegerQ[Product[Part[Divisors[#], i], {i, DivisorSigma[0, #]-1}]^(1/3)] &]
Previous Showing 21-30 of 44 results. Next