A216182
Riordan array ((1+x)/(1-x)^2, x(1+x)^2/(1-x)^2).
Original entry on oeis.org
1, 3, 1, 5, 7, 1, 7, 25, 11, 1, 9, 63, 61, 15, 1, 11, 129, 231, 113, 19, 1, 13, 231, 681, 575, 181, 23, 1, 15, 377, 1683, 2241, 1159, 265, 27, 1, 17, 575, 3653, 7183, 5641, 2047, 365, 31, 1, 19, 833, 7183, 19825, 22363, 11969, 3303, 481, 35, 1
Offset: 0
Triangle begins
1;
3, 1;
5, 7, 1;
7, 25, 11, 1;
9, 63, 61, 15, 1;
11, 129, 231, 113, 19, 1;
13, 231, 681, 575, 181, 23, 1;
15, 377, 1683, 2241, 1159, 265, 27, 1;
17, 575, 3653, 7183, 5641, 2047, 365, 31, 1;
...
-
A216182[n_, k_]:= Hypergeometric2F1[-n +k, -2*k-1, 1, 2];
Table[A216182[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
-
def A216182(n,k): return simplify( hypergeometric([-n+k, -2*k-1], [1], 2) )
flatten([[A216182(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021
A346539
a(n) is the number of paths in the Z X Z grid joining (0,0) and (n,n) each of whose steps increases the Euclidean distance to the origin and has coordinates with absolute value at most 1.
Original entry on oeis.org
1, 3, 25, 241, 2545, 28203, 322681, 3776275, 44947503, 542097295, 6607714859, 81247609095, 1006335719467, 12542292874825, 157159924565801, 1978517963096763, 25010881408459855, 317327992746937599, 4039340709637022007, 51569571332132589961, 660140626022179390983
Offset: 0
-
b:= proc(n, k) option remember; `if`([n, k]=[0$2], 1, add(add(
`if`(i^2+j^2 b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2021
-
rodean[{m_, n_}] := Select[ Complement[ Flatten[Table[{m, n} + {s, t}, {s, -1, 1}, {t, -1, 1}], 1] // Union, {{m, n}}], #[[1]]^2 + #[[2]]^2 < m^2 + n^2 &];
$RecursionLimit=10^6; Clear[T]; T[{0, 0}]=1; T[{m_,n_}]:= T[{m,n}]= Sum[T[rodean[{m,n}][[i]]],{i,Length[rodean[{m, n}]]}]; Table[T[{n,n}],{n, 0,22}]
(* Second program: *)
b[n_, k_] := b[n, k] = If[{n, k} == {0, 0}, 1, Sum[Sum[If[i^2 + j^2 < n^2 + k^2, b@@Sort[{i, j}], 0], {j, k-1, k+1}], {i, n-1, n+1}]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 03 2021, after Alois P. Heinz *)
A053805
Expansion of (1 + x)^12 / (1 - x)^13.
Original entry on oeis.org
1, 25, 313, 2625, 16641, 85305, 369305, 1392065, 4673345, 14218905, 39753273, 103274625, 251595969, 579168825, 1267854873, 2653649025, 5334940545, 10343052825, 19403906105, 35330137025, 62596382081, 108167252025, 182668423833, 302016962625, 489658242241
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)^12/(1-x)^13)); // Bruno Berselli, Apr 17 2014
-
CoefficientList[Series[(1 + x)^12/(1 - x)^13, {x, 0, 30}], x] (* Bruno Berselli, Apr 17 2014 *)
-
Vec((1+x)^12/(1-x)^13+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
A064643
Bidirectional 'Delannoy' variation of the Boustrophedon transform applied to all 1's sequence: Fill an triangular array in alternating directions. Let the first element of each row in that direction be equal to 1. Each next entry is given by T(n,k) = T(n,k +/- 1) + T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), where the +/- depends on which is the previous element in the direction one is filling in the row. The final number of row n gives a(n).
Original entry on oeis.org
1, 2, 6, 22, 105, 631, 4603, 39469, 388870, 4327322, 53670985, 734069672, 10975379510, 178080287645, 3116286236549, 58502460526469
Offset: 0
A101167
Nontrivial Delannoy numbers that are primes.
Original entry on oeis.org
13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1289, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 5641, 7321, 8581, 9661, 9941, 10513, 11969, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841
Offset: 1
D(2,7)=T(9,2)=113=A000040(30), therefore 113 is a term.
A112475
Riordan array (1/(1+x),x(1+x)/(1-x)).
Original entry on oeis.org
1, -1, 1, 1, 1, 1, -1, 1, 3, 1, 1, 1, 5, 5, 1, -1, 1, 7, 13, 7, 1, 1, 1, 9, 25, 25, 9, 1, -1, 1, 11, 41, 63, 41, 11, 1, 1, 1, 13, 61, 129, 129, 61, 13, 1, -1, 1, 15, 85, 231, 321, 231, 85, 15, 1, 1, 1, 17, 113, 377, 681, 681, 377, 113, 17, 1
Offset: 0
Triangle starts:
1;
-1, 1;
1, 1, 1;
-1, 1, 3, 1;
1, 1, 5, 5, 1;
-1, 1, 7, 13, 7, 1;
1, 1, 9, 25, 25, 9, 1;
...
-
T[n_,k_]:=SeriesCoefficient[(x(1+x)/(1-x))^k/(1+x),{x,0,n}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, May 26 2024 *)
A142977
Table of coefficients in the expansion of the rational function 1/{(1-x)^2 - y*(1+x)^2}.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 10, 19, 4, 1, 14, 51, 44, 5, 1, 18, 99, 180, 85, 6, 1, 22, 163, 476, 501, 146, 7, 1, 26, 243, 996, 1765, 1182, 231, 8, 1, 30, 339, 1804, 4645, 5418, 2471, 344, 9, 1, 34, 451, 2964, 10165, 17718, 14407, 4712, 489, 10
Offset: 0
The square array begins
n\k| 0...1....2.....3.....4.......5
------------------------------------
.0.| 1...2....3.....4......5......6 ... A000027
.1.| 1...6...19....44.....85....146 ... A005900
.2.| 1..10...51...180....501...1182 ... A069038
.3.| 1..14...99...476...1765...5418 ... A099193
.4.| 1..18..163...996...4645..17718 ... A099196
.5.| 1..22..243..1804..10165..46530 ... A300624
...
-
with(combinat): T:=(n,k) -> add(binomial(2n,k-j)*binomial(2n+j+1,j), j = 0..k): for n from 0 to 9 do seq(T(n,k), k = 0..9) end do;
Restored missing program. -
Peter Bala, Oct 02 2008
A225413
Triangle read by rows: T(n,k) = (A101164(n,k) - A014473(n,k))/2.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 6, 12, 6, 0, 0, 0, 0, 10, 30, 30, 10, 0, 0, 0, 0, 15, 60, 91, 60, 15, 0, 0, 0, 0, 21, 105, 215, 215, 105, 21, 0, 0, 0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0, 0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0
Offset: 0
Triangle begins as:
0;
0, 0;
0, 0, 0;
0, 0, 0, 0;
0, 0, 1, 0, 0;
0, 0, 3, 3, 0, 0;
0, 0, 6, 12, 6, 0, 0;
0, 0, 10, 30, 30, 10, 0, 0;
0, 0, 15, 60, 91, 60, 15, 0, 0;
0, 0, 21, 105, 215, 215, 105, 21, 0, 0;
0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0;
0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0;
0, 0, 45, 360, 1330, 2800, 3571, 2800, 1330, 360, 45, 0, 0;
0, 0, 55, 495, 2106, 5250, 8197, 8197, 5250, 2106, 495, 55, 0, 0;
3rd column =
A000217 (triangular numbers).
4th column =
A027480 (n(n+1)(n+2)/2).
-
a225413 n k = a225413_tabl !! n !! k
a225413_row n = a225413_tabl !! n
a225413_tabl = map (map (`div` 2)) $
zipWith (zipWith (-)) a101164_tabl a014473_tabl
-- Reinhard Zumkeller, Jul 30 2013
-
A008288:= func< n,k | (&+[Binomial(n-j, j)*Binomial(n-2*j, k-j): j in [0..k]]) >;
A225413:= func< n,k | (A008288(n,k) - 2*Binomial(n,k) + 1)/2 >;
[A225413(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
-
T[n_, k_]:= ((-1)^(n-k)*Hypergeometric2F1[-n+k,k+1,1,2] - 2*Binomial[n, k] +1)/2;
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
-
def A008288(n,k): return sum(binomial(n-j,j)*binomial(n-2*j,k-j) for j in range(k+1))
def A225413(n,k): return (A008288(n,k) -2*binomial(n,k) +1)//2
flatten([[A225413(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024
A227964
Triangle where the g.f. of row n equals (1-x-x^2+x^3)^n and terms T(n,k) are read by rows n>=0, k=0..3*n.
Original entry on oeis.org
1, 1, -1, -1, 1, 1, -2, -1, 4, -1, -2, 1, 1, -3, 0, 8, -6, -6, 8, 0, -3, 1, 1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1, 1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1, 1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1, 1, -7, 14, 14, -91, 77, 168, -344, -14, 546, -364, -364, 546, -14, -344, 168, 77, -91, 14, 14, -7, 1
Offset: 0
Triangle begins:
1;
1, -1, -1, 1;
1, -2, -1, 4, -1, -2, 1;
1, -3, 0, 8, -6, -6, 8, 0, -3, 1;
1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1;
1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1;
1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1;
1, -7, 14, 14, -91, 77, 168, -344, -14, 546, -364, -364, 546, -14, -344, 168, 77, -91, 14, 14, -7, 1; ...
-
{T(n,k)=polcoeff((1-x-x^2+x^3 +x*O(x^k))^n,k)}
for(n=0,10,for(k=0,3*n,print1(T(n,k),", "));print(""))
A229995
Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) is the Fibonacci polynomial defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 5, 0, 5, 0, 1, 1, 0, 7, 0, 13, 0, 7, 0, 1, 1, 0, 9, 0, 25, 0, 25, 0, 9, 0, 1, 1, 0, 11, 0, 41, 0, 63, 0, 41, 0, 11, 0, 1, 1, 0, 13, 0, 61, 0, 129, 0, 129, 0, 61, 0, 13, 0, 1, 1, 0, 15, 0, 85, 0, 231, 0, 321, 0, 231, 0, 85, 0
Offset: 0
First 4 rows:
1
1 0 1
1 0 3 0 1
1 0 5 0 5 0 1
-
p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}]
f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]]
g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]]
h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]]
t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]]; (* A229995 *)
t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]]; (* A230002 *)
t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]]; (* A059317 *)
Comments