cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 141 results. Next

A216182 Riordan array ((1+x)/(1-x)^2, x(1+x)^2/(1-x)^2).

Original entry on oeis.org

1, 3, 1, 5, 7, 1, 7, 25, 11, 1, 9, 63, 61, 15, 1, 11, 129, 231, 113, 19, 1, 13, 231, 681, 575, 181, 23, 1, 15, 377, 1683, 2241, 1159, 265, 27, 1, 17, 575, 3653, 7183, 5641, 2047, 365, 31, 1, 19, 833, 7183, 19825, 22363, 11969, 3303, 481, 35, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 11 2013

Keywords

Comments

Triangle formed of odd-numbered columns of the Delannoy triangle A008288.

Examples

			Triangle begins
   1;
   3,   1;
   5,   7,    1;
   7,  25,   11,    1;
   9,  63,   61,   15,    1;
  11, 129,  231,  113,   19,    1;
  13, 231,  681,  575,  181,   23,   1;
  15, 377, 1683, 2241, 1159,  265,  27,  1;
  17, 575, 3653, 7183, 5641, 2047, 365, 31, 1;
  ...
		

Crossrefs

Cf. (columns:) A005408, A001845, A001847, A001849, A008419.
Cf. Diagonals: A000012, A004767, A060820.
Cf. A008288 (Delannoy triangle), A114123 (even-numbered columns of A008288).

Programs

  • Mathematica
    A216182[n_, k_]:= Hypergeometric2F1[-n +k, -2*k-1, 1, 2];
    Table[A216182[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
  • Sage
    def A216182(n,k): return simplify( hypergeometric([-n+k, -2*k-1], [1], 2) )
    flatten([[A216182(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021

Formula

T(2n, n) = A108448(n+1).
Sum_{k=0..n} T(n,k) = A073717(n+1).
From G. C. Greubel, Nov 19 2021: (Start)
T(n, k) = A008288(n+k+1, 2*k+1).
T(n, k) = hypergeometric([-n+k, -2*k-1], [1], 2). (End)

A346539 a(n) is the number of paths in the Z X Z grid joining (0,0) and (n,n) each of whose steps increases the Euclidean distance to the origin and has coordinates with absolute value at most 1.

Original entry on oeis.org

1, 3, 25, 241, 2545, 28203, 322681, 3776275, 44947503, 542097295, 6607714859, 81247609095, 1006335719467, 12542292874825, 157159924565801, 1978517963096763, 25010881408459855, 317327992746937599, 4039340709637022007, 51569571332132589961, 660140626022179390983
Offset: 0

Views

Author

Keywords

Comments

All terms are odd.

Crossrefs

Main diagonal of A346538.
Column k=2 of A347811.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`([n, k]=[0$2], 1, add(add(
         `if`(i^2+j^2 b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 12 2021
  • Mathematica
    rodean[{m_, n_}] := Select[ Complement[ Flatten[Table[{m, n} + {s, t}, {s, -1, 1}, {t, -1, 1}], 1] // Union, {{m, n}}], #[[1]]^2 + #[[2]]^2 < m^2 + n^2 &];
    $RecursionLimit=10^6; Clear[T]; T[{0, 0}]=1; T[{m_,n_}]:= T[{m,n}]= Sum[T[rodean[{m,n}][[i]]],{i,Length[rodean[{m, n}]]}]; Table[T[{n,n}],{n, 0,22}]
    (* Second program: *)
    b[n_, k_] := b[n, k] = If[{n, k} == {0, 0}, 1, Sum[Sum[If[i^2 + j^2 < n^2 + k^2, b@@Sort[{i, j}], 0], {j, k-1, k+1}], {i, n-1, n+1}]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 03 2021, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 1/6*(19009+153*sqrt(17))^(1/3) + 356/(3*(19009+153*sqrt(17))^(1/3)) + 14/3 = 13.56165398271839628518... and c = 2.3842296614800994817864695565477260682981556338086519... . - Vaclav Kotesovec, Sep 13 2021

A053805 Expansion of (1 + x)^12 / (1 - x)^13.

Original entry on oeis.org

1, 25, 313, 2625, 16641, 85305, 369305, 1392065, 4673345, 14218905, 39753273, 103274625, 251595969, 579168825, 1267854873, 2653649025, 5334940545, 10343052825, 19403906105, 35330137025, 62596382081, 108167252025, 182668423833, 302016962625, 489658242241
Offset: 0

Views

Author

R. K. Guy, Apr 07 2000

Keywords

Comments

This is row/column 12 of the Delannoy numbers array, A008288, which is the main entry for these numbers, listing many more properties. - Peter Munn, Jan 05 2023

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)^12/(1-x)^13)); // Bruno Berselli, Apr 17 2014
  • Mathematica
    CoefficientList[Series[(1 + x)^12/(1 - x)^13, {x, 0, 30}], x] (* Bruno Berselli, Apr 17 2014 *)
  • PARI
    Vec((1+x)^12/(1-x)^13+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    

Formula

G.f.: (1+x)^12/(1-x)^13.
a(n) = A240876(n) + 2*Sum_{i=0..n-1} A240876(i) for n>0, a(0)=1. - Bruno Berselli, Apr 17 2014
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13). - Wesley Ivan Hurt, Jul 09 2025

A064643 Bidirectional 'Delannoy' variation of the Boustrophedon transform applied to all 1's sequence: Fill an triangular array in alternating directions. Let the first element of each row in that direction be equal to 1. Each next entry is given by T(n,k) = T(n,k +/- 1) + T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), where the +/- depends on which is the previous element in the direction one is filling in the row. The final number of row n gives a(n).

Original entry on oeis.org

1, 2, 6, 22, 105, 631, 4603, 39469, 388870, 4327322, 53670985, 734069672, 10975379510, 178080287645, 3116286236549, 58502460526469
Offset: 0

Views

Author

Floor van Lamoen, Oct 03 2001

Keywords

Crossrefs

Cf. A064641. Table: A064644, Delannoy numbers A008288.

A101167 Nontrivial Delannoy numbers that are primes.

Original entry on oeis.org

13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1289, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 5641, 7321, 8581, 9661, 9941, 10513, 11969, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 03 2004

Keywords

Comments

Let D and T be defined as in A008288: then D(n,1)=D(1,n)=T(n,1)=T(n,n-1)=2*n+1, therefore all odd primes are Delannoy numbers; the sequence contains only primes of form D(n,k) with n>1 and k>1, resp. T(n,k) with 2<=k<=n-2.
apart from the first term A092830 is a subsequence.

Examples

			D(2,7)=T(9,2)=113=A000040(30), therefore 113 is a term.
		

A112475 Riordan array (1/(1+x),x(1+x)/(1-x)).

Original entry on oeis.org

1, -1, 1, 1, 1, 1, -1, 1, 3, 1, 1, 1, 5, 5, 1, -1, 1, 7, 13, 7, 1, 1, 1, 9, 25, 25, 9, 1, -1, 1, 11, 41, 63, 41, 11, 1, 1, 1, 13, 61, 129, 129, 61, 13, 1, -1, 1, 15, 85, 231, 321, 231, 85, 15, 1, 1, 1, 17, 113, 377, 681, 681, 377, 113, 17, 1
Offset: 0

Views

Author

Paul Barry, Sep 07 2005

Keywords

Comments

Equivalent to Delannoy triangle A008288 with prepended column 1,-1,1,-1,... Row sums are A111954. Diagonal sums are A112476. Inverse is A112477.

Examples

			Triangle starts:
   1;
  -1, 1;
   1, 1, 1;
  -1, 1, 3,  1;
   1, 1, 5,  5,  1;
  -1, 1, 7, 13,  7, 1;
   1, 1, 9, 25, 25, 9, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(x(1+x)/(1-x))^k/(1+x),{x,0,n}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, May 26 2024 *)

Formula

T(n,k) = Sum{j=0..n-k} C(k-1,j)*C(n-j-1,n-k-j).

A142977 Table of coefficients in the expansion of the rational function 1/{(1-x)^2 - y*(1+x)^2}.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 10, 19, 4, 1, 14, 51, 44, 5, 1, 18, 99, 180, 85, 6, 1, 22, 163, 476, 501, 146, 7, 1, 26, 243, 996, 1765, 1182, 231, 8, 1, 30, 339, 1804, 4645, 5418, 2471, 344, 9, 1, 34, 451, 2964, 10165, 17718, 14407, 4712, 489, 10
Offset: 0

Views

Author

Peter Bala, Jul 15 2008

Keywords

Comments

The row entries are the figurate numbers of the odd dimensional cross polytopes. See A142978 for the complete table of figurate numbers of n-dimensional cross polytopes. The rows are the partial sums of the even-numbered rows of the square array of Delannoy numbers A008288.

Examples

			The square array begins
 n\k| 0...1....2.....3.....4.......5
------------------------------------
 .0.| 1...2....3.....4......5......6 ... A000027
 .1.| 1...6...19....44.....85....146 ... A005900
 .2.| 1..10...51...180....501...1182 ... A069038
 .3.| 1..14...99...476...1765...5418 ... A099193
 .4.| 1..18..163...996...4645..17718 ... A099196
 .5.| 1..22..243..1804..10165..46530 ... A300624
 ...
		

Crossrefs

Cf. A005900 (row 1), A008288, A069038 (row 2), A099193 (row 3), A099196 (row 4), A300624 (row 5), A142978, A142983.

Programs

  • Maple
    with(combinat): T:=(n,k) -> add(binomial(2n,k-j)*binomial(2n+j+1,j), j = 0..k): for n from 0 to 9 do seq(T(n,k), k = 0..9) end do;

Formula

T(n,k) = Sum_{j = 0..k} C(2*n, k-j)*C(2*n+j+1, j).
O.g.f.: 1/{(1 - x)^2 - y*(1 + x)^2} = Sum_{n, k >= 0} T(n,k)*x^k*y^n = 1/(1 - y) * Sum_{m >= 0} U(m, (1 + y)/(1 - y))*x^m, where U(m, y) denotes the m-th Chebyshev polynomial of the second kind.
O.g.f. row n: (1 + x)^(2*n)/(1 - x)^(2*n+2).
O.g.f. column k: 1/(1 - y)*U(k, (1 + y)/(1 - y)).
The entries in the n-th row appear in the series acceleration formula for the constant log(2): Sum_{k >= 1} (-1)^(k+1)/(T(n,k)*T(n,k+1)) = 1 + (4*n + 2)*( log(2) - (1 - 1/2 + 1/3 - ... + 1/(2*n + 1)) ).
For example, n = 1 gives log(2) = 4/6 + (1/6)*( 1/(1*6) - 1/(6*19) + 1/(19*44) - 1/(44*85) + ... ). See A142983 for further details.

Extensions

Restored missing program. - Peter Bala, Oct 02 2008

A225413 Triangle read by rows: T(n,k) = (A101164(n,k) - A014473(n,k))/2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 6, 12, 6, 0, 0, 0, 0, 10, 30, 30, 10, 0, 0, 0, 0, 15, 60, 91, 60, 15, 0, 0, 0, 0, 21, 105, 215, 215, 105, 21, 0, 0, 0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0, 0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0
Offset: 0

Views

Author

Jeremy Gardiner, Jul 28 2013

Keywords

Comments

Has opposite parity to A140356, A155454.

Examples

			Triangle begins as:
  0;
  0,  0;
  0,  0,  0;
  0,  0,  0,   0;
  0,  0,  1,   0,    0;
  0,  0,  3,   3,    0,    0;
  0,  0,  6,  12,    6,    0,    0;
  0,  0, 10,  30,   30,   10,    0,    0;
  0,  0, 15,  60,   91,   60,   15,    0,    0;
  0,  0, 21, 105,  215,  215,  105,   21,    0,    0;
  0,  0, 28, 168,  435,  590,  435,  168,   28,    0,   0;
  0,  0, 36, 252,  791, 1365, 1365,  791,  252,   36,   0,  0;
  0,  0, 45, 360, 1330, 2800, 3571, 2800, 1330,  360,  45,  0,  0;
  0,  0, 55, 495, 2106, 5250, 8197, 8197, 5250, 2106, 495, 55,  0,  0;
		

Crossrefs

3rd column = A000217 (triangular numbers).
4th column = A027480 (n(n+1)(n+2)/2).

Programs

  • Haskell
    a225413 n k = a225413_tabl !! n !! k
    a225413_row n = a225413_tabl !! n
    a225413_tabl = map (map (`div` 2)) $
                   zipWith (zipWith (-)) a101164_tabl a014473_tabl
    -- Reinhard Zumkeller, Jul 30 2013
    
  • Magma
    A008288:= func< n,k | (&+[Binomial(n-j, j)*Binomial(n-2*j, k-j): j in [0..k]]) >;
    A225413:= func< n,k | (A008288(n,k) - 2*Binomial(n,k) + 1)/2 >;
    [A225413(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
    
  • Mathematica
    T[n_, k_]:= ((-1)^(n-k)*Hypergeometric2F1[-n+k,k+1,1,2] - 2*Binomial[n, k] +1)/2;
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
  • SageMath
    def A008288(n,k): return sum(binomial(n-j,j)*binomial(n-2*j,k-j) for j in range(k+1))
    def A225413(n,k): return (A008288(n,k) -2*binomial(n,k) +1)//2
    flatten([[A225413(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024

Formula

T(n, k) = (A101164(n,k) - A014473(n,k))/2.
T(n, k) = (A008288(n,k) - 2*A007318(n,k) + 1)/2.
From G. C. Greubel, Apr 08 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = (A000129(n+1) + n + 1 - 2^(n+1))/2.
Sum_{k=0..n} (-1)^k*T(n, k) = A121262(n) - [n=0]. (End)

A227964 Triangle where the g.f. of row n equals (1-x-x^2+x^3)^n and terms T(n,k) are read by rows n>=0, k=0..3*n.

Original entry on oeis.org

1, 1, -1, -1, 1, 1, -2, -1, 4, -1, -2, 1, 1, -3, 0, 8, -6, -6, 8, 0, -3, 1, 1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1, 1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1, 1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1, 1, -7, 14, 14, -91, 77, 168, -344, -14, 546, -364, -364, 546, -14, -344, 168, 77, -91, 14, 14, -7, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 01 2013

Keywords

Examples

			Triangle begins:
1;
1, -1, -1, 1;
1, -2, -1, 4, -1, -2, 1;
1, -3, 0, 8, -6, -6, 8, 0, -3, 1;
1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1;
1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1;
1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1;
1, -7, 14, 14, -91, 77, 168, -344, -14, 546, -364, -364, 546, -14, -344, 168, 77, -91, 14, 14, -7, 1; ...
		

Crossrefs

Cf. A192205.

Programs

  • PARI
    {T(n,k)=polcoeff((1-x-x^2+x^3 +x*O(x^k))^n,k)}
    for(n=0,10,for(k=0,3*n,print1(T(n,k),", "));print(""))

Formula

Sum_{k=0..3*n} |T(n,k)| = A192205(n).
Sum_{k=0..3*n} T(n,k)^2 = binomial(4*n,n).
Sum_{k=0..3*n} T(n,k) * binomial(3*n,k) = (-1)^n * binomial(4*n,n).
Sum_{k=0..3*n} T(n,k) * binomial(2*n+k,k) = 2^n.
Sum_{k=0..3*n} T(n,k) * binomial(3*n+k,k) = A008288(3*n,n), where A008288 is the Delannoy array (see A026001).

A229995 Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) is the Fibonacci polynomial defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 5, 0, 5, 0, 1, 1, 0, 7, 0, 13, 0, 7, 0, 1, 1, 0, 9, 0, 25, 0, 25, 0, 9, 0, 1, 1, 0, 11, 0, 41, 0, 63, 0, 41, 0, 11, 0, 1, 1, 0, 13, 0, 61, 0, 129, 0, 129, 0, 61, 0, 13, 0, 1, 1, 0, 15, 0, 85, 0, 231, 0, 321, 0, 231, 0, 85, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 07 2013

Keywords

Comments

Deleting the 0's leaves A008288 (Delannoy numbers as a triangle). Define q(n,x) = p(n, x + 1/x). If r is a zero of p(n,x) then (1/2)*(r +- sqrt(r^2 - 4)) are zeros of q(n,x).

Examples

			First 4 rows:
  1
  1 0 1
  1 0 3 0 1
  1 0 5 0 5 0 1
		

Crossrefs

Programs

  • Mathematica
    p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}]
    f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]]
    g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]]
    h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]]
    t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]];  (* A229995 *)
    t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]];  (* A230002 *)
    t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]];  (* A059317 *)
Previous Showing 101-110 of 141 results. Next