A049353 A triangle of numbers related to triangle A030526.
1, 5, 1, 30, 15, 1, 210, 195, 30, 1, 1680, 2550, 675, 50, 1, 15120, 34830, 14025, 1725, 75, 1, 151200, 502740, 287280, 51975, 3675, 105, 1, 1663200, 7692300, 5961060, 1482705, 151200, 6930, 140, 1, 19958400, 124740000, 126913500, 41545980
Offset: 1
Examples
Triangle begins: {1}; {5,1}; {30,15,1}; E.g., row polynomial E(3,x)=30*x+15*x^2+x^3. {210,195,30,1}; ... a(4,2)= 195 =4*(5*6)+3*(5*5) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*5*6)=30 colored versions, e.g., ((1c1),(2c1,3c5,4c6)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 5 colors, c1..c5, can be chosen and the vertex labeled 4 with j=2 can come in 6 colors, e.g., c1..c6. Therefore there are 4*((1)*(1*5*6))=120 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*5)*(1*5))=75 such forests, e.g., ((1c1,3c4)(2c1,4c5)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First ten rows.
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> (n+4)!/24, 10); # Peter Luschny, Jan 28 2016
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = (4m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover, Jul 22 2011 *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; rows = 10; M = BellMatrix[(#+4)!/24&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
Maxima
a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+4*j-1,4*j-1),j,1,k))/(4^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
Formula
a(n, m) = n!*A030526(n, m)/(m!*4^(n-m)); a(n, m) = (4*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
a(n,k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+4*j-1,4*j-1)))/(4^k*k!). - Vladimir Kruchinin, Apr 01 2011
A187539 Alternated binomial partial sums of central Lah numbers (A187535).
1, 1, 33, 1097, 54209, 3527889, 285356449, 27608615257, 3110179582593, 399896866564001, 57791843384031521, 9273757516482276201, 1636151050649025202753, 314786007405793614831217, 65590496972310741712688289, 14714600180590751334321307769
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Maple
seq((-1)^n+add((-1)^(n-k)*binomial(n,k)*binomial(2*k-1,k-1)*(2*k)!/k!, k=1..n), n=0..20);
-
Mathematica
Table[(-1)^n + Sum[(-1)^(n-k)Binomial[n,k]Binomial[2k-1,k-1](2k)!/k!, {k, 1, n}], {n, 0, 20}]
-
Maxima
makelist((-1)^n+sum((-1)^(n-k)*binomial(n,k)*binomial(2*k-1,k-1) *(2*k)!/k!, k,1,n), n,0,12);
Formula
a(n) = 1+sum((-1)^(n-k)*C(n,k)*C(2k-1,k-1)*(2k)!/k!, k=0..n).
Recurrence: n>=3, a(n) = (2*(-1)^n + (32 - 48*n + 16*n^2)*a(n-3) + (33 - 65*n + 32*n^2)*a(n-2) + (5 - 18*n + 16*n^2)*a(n-1))/n
E.g.f.: exp(-x) (1/2 + 1/pi K(16x) ), where K(z) is the elliptic integral of the first kind (defined as in Mathematica).
a(n) ~ 16^n*n^(n-1/2)/(sqrt(2*Pi)*exp(n+1/16)). - Vaclav Kotesovec, Aug 10 2013
A049374 A triangle of numbers related to triangle A030527.
1, 6, 1, 42, 18, 1, 336, 276, 36, 1, 3024, 4200, 960, 60, 1, 30240, 66024, 23400, 2460, 90, 1, 332640, 1086624, 557424, 87360, 5250, 126, 1, 3991680, 18805248, 13349952, 2916144, 255360, 9912, 168, 1, 51891840, 342486144, 325854144, 95001984
Offset: 1
Comments
a(n,1) = A001725(n+4). a(n,m)=: S1p(6; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m) = A008275 (unsigned Stirling first kind), S1p(2; n,m) = A008297(n,m) (unsigned Lah numbers). S1p(3; n,m) = A046089(n,m), S1p(4; n,m) = A049352, S1p(5; n,m) = A049353(n,m).
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A049385(n,m) =: S2(6; n,m). The monic row polynomials E(n,x) := Sum_{m=1..n} (a(n,m)*x^m), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j >= 1 come in j+5 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 12 2007
Examples
Triangle begins 1; 6, 1; 42, 18, 1; 336, 276, 36, 1; 3024, 4200, 960, 60, 1; 30240, 66024, 23400, 2460, 90, 1; 332640, 1086624, 557424, 87360, 5250, 126, 1; E.g., row polynomial E(3,x) = 42*x + 18*x^2 + x^3. a(4,2) = 276 = 4*(6*7) + 3*(6*6) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*6*7)=42 colored versions, e.g., ((1c1),(2c1,3c6,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 6 colors, c1..c6, can be chosen and the vertex labeled 4 with j=2 can come in 7 colors, e.g., c1..c7. Therefore there are 4*((1)*(1*6*7))=168 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*6)*(1*6))=108 such forests, e.g., ((1c1,3c4)(2c1,4c6)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..1275
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First ten rows.
Programs
-
GAP
Flat(List([1..10],n->Factorial(n)*List([1..n],k->Sum([1..k],j->(-1)^(k-j)*Binomial(k,j)*Binomial(n+5*j-1,5*j-1)/(5^k*Factorial(k)))))); # Muniru A Asiru, Jun 23 2018
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> (n+5)!/120, 10); # Peter Luschny, Jan 28 2016
-
Mathematica
a[n_, k_] = n!*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n + 5j - 1, 5j - 1]/(5^k*k!), {j, 1, k}] ; Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ][[1 ;; 40]] (* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; rows = 10; M = BellMatrix[(#+5)!/120&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
Maxima
a(n,k)=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1),j,1,k))/(5^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
PARI
a(n,k)=(n!*sum(j=1,k,(-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1)))/(5^k*k!); for(n=1,12,for(k=1,n,print1(a(n,k),", "));print()); /* print triangle */ /* Joerg Arndt, Apr 01 2011 */
Formula
a(n, m) = n!*A030527(n, m)/(m!*5^(n-m)); a(n, m) = (5*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n < m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(5 - 10*x + 10*x^2 - 5*x^3 + x^4)/(5*(1-x)^5))^m)/m!.
a(n,k) = n!* Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1) /(5^k*k!). - Vladimir Kruchinin, Apr 01 2011
A084357 Number of sets of sets of lists.
1, 1, 4, 23, 171, 1552, 16583, 203443, 2813660, 43258011, 731183365, 13466814110, 268270250977, 5744515120489, 131525839441428, 3205279987587275, 82812074976214547, 2260364854328771548, 64979726427408468055, 1961976154991285214707, 62065551492895731512852
Offset: 0
Keywords
Comments
In the book by Flajolet and Sedgewick on page 139 incorrectly gives a(5) = 1542. - Vaclav Kotesovec, Jul 11 2020
References
- T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 139.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem [J. Phys. A 37 (2004), 3475-3487]
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
Programs
-
Maple
with(combstruct); SetSetSeqL := [T, {T=Set(S), S=Set(U,card >= 1), U=Sequence(Z,card >=1)},labeled]; [seq(count(%,size=j),j=1..12)];
-
Mathematica
a[n_] = Sum[ n!/k!*Binomial[n-1, k-1]*BellB[k], {k, 0, n}]; a[0] = 1; Array[a, 20, 0] (* Jean-François Alcover, Jun 22 2011, after Vladeta Jovovic *)
Formula
E.g.f.: exp(exp(x/(1-x))-1). Lah transform of Bell numbers: Sum_{k=0..n} n!/k!*binomial(n-1, k-1)*Bell(k). - Vladeta Jovovic, Sep 28 2003
A090214 Generalized Stirling2 array S_{4,4}(n,k).
1, 24, 96, 72, 16, 1, 576, 13824, 50688, 59904, 30024, 7200, 856, 48, 1, 13824, 1714176, 21606912, 76317696, 110160576, 78451200, 30645504, 6976512, 953424, 78400, 3760, 96, 1, 331776, 207028224, 8190885888, 74684104704, 253100173824
Offset: 1
Comments
The row length sequence for this array is [1,5,9,13,17,...] = A016813(n-1), n >= 1.
The g.f. for the k-th column, (with leading zeros and k >= 4) is G(k,x) = x^ceiling(k/4)*P(k,x)/Product_{p = 4..k} (1 - fallfac(p,4)*x), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := Sum_{m = 0..kmax(k)} A090221(k,m)*x^m, k >= 4, with kmax(k) := A057353(k-4)= floor(3*(k-4)/4). For the recurrence of the G(k,x) see A090221.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_4 (the disjoint union of n copies of the complete graph K_4). - Peter Bala, Aug 15 2013
Examples
Table begins n\k| 4 5 6 7 8 9 10 11 12 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 1 | 1 2 | 24 96 72 16 1 3 | 576 13824 50688 59904 30024 7200 856 48 1 ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 71, flattened)
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Codara, O. M. D’Antona, and P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv:1308.1700v1 [cs.DM], 2013.
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Wolfdieter Lang, First 4 rows.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
Crossrefs
Programs
-
Maple
T:= (n,k) -> (-1)^k/k!*add((-1)^p*binomial(k,p)*(p*(p-1)*(p-2)*(p-3))^n,p=4..k): seq(seq(T(n,k),k=4..4*n),n=1..10); # Robert Israel, Jan 28 2016
-
Mathematica
a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*FactorialPower[p, 4]^n, {p, 4, k}]; Table[a[n, k], {n, 1, 5}, {k, 4, 4*n}] // Flatten (* Jean-François Alcover, Sep 05 2012, updated Jan 28 2016 *)
Formula
a(n, k) = (-1)^k/k! * Sum_{p = 4..k} (-1)^p * binomial(k, p) * fallfac(p, 4)^n, with fallfac(p, 4) := A008279(p, 4) = p*(p - 1)*(p - 2)*(p - 3); 4 <= k <= 4*n, n >= 1, else 0. From eq.(19) with r = 4 of the Blasiak et al. reference.
E^n = Sum_{k = 4..4*n} a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator (x^4)*d^4/dx^4.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k >= 0} (k*(k - 1)*(k - 2)*(k - 3))^n*x^k/k!. - Peter Bala, Aug 15 2013
A001755 Lah numbers: a(n) = n! * binomial(n-1, 3)/4!.
1, 20, 300, 4200, 58800, 846720, 12700800, 199584000, 3293136000, 57081024000, 1038874636800, 19833061248000, 396661224960000, 8299373322240000, 181400588328960000, 4135933413900288000, 98228418580131840000, 2426819753156198400000, 62288373664342425600000
Offset: 4
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 4..100
Crossrefs
Programs
-
Magma
[Factorial(n-1)*Binomial(n, 4)/6: n in [4..30]]; // G. C. Greubel, May 10 2021
-
Maple
A001755 := n-> n!*binomial(n-1,3)/4!;
-
Mathematica
Table[n!Binomial[n-1, 3]/4!, {n, 4, 25}] (* T. D. Noe, Aug 10 2012 *)
-
Sage
[binomial(n,4)*factorial (n-1)/6 for n in range(4, 21)] # Zerinvary Lajos, Jul 07 2009
Formula
E.g.f.: ((x/(1-x))^4)/4!.
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} (binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) ) ) then a(n) = (-1)^n*f(n,4,-4), (n>=4). - Milan Janjic, Mar 01 2009
D-finite with recurrence (-n+4)*a(n) +n*(n-1)*a(n-1)=0. - R. J. Mathar, Jan 06 2021
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 12*(Ei(1) - gamma + 2*e) - 80, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=4} (-1)^n/a(n) = 156*(gamma - Ei(-1)) - 96/e - 88, where Ei(-1) = -A099285. (End)
Extensions
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
A001777 Lah numbers: a(n) = n! * binomial(n-1, 4)/5!.
1, 30, 630, 11760, 211680, 3810240, 69854400, 1317254400, 25686460800, 519437318400, 10908183686400, 237996734976000, 5394592659456000, 126980411830272000, 3101950060425216000, 78582734864105472000, 2062796790182768640000, 56059536297908183040000
Offset: 5
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 5..100
Crossrefs
Programs
-
Maple
A001777 := n-> n!*binomial(n-1,4)/5!;
-
Mathematica
Table[n! Binomial[n - 1, 4]/5!, {n, 5, 20}] (* T. D. Noe, Aug 10 2012 *)
-
Sage
[binomial(n,5)*factorial (n-1)/factorial (4) for n in range(5, 21)] # Zerinvary Lajos, Jul 07 2009
Formula
E.g.f.: ((x/(1-x))^5)/5!.
If we define f(n,i,x) = sum(sum(binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j),j=i..k),k=i..n) then a(n+1)=(-1)^n*f(n,4,-6), (n>=4). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=5} 1/a(n) = 20*(Ei(1) - gamma) - 200*e + 1555/3, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=5} (-1)^(n+1)/a(n) = 1460*(gamma - Ei(-1)) - 880/e - 2515/3, where Ei(-1) = -A099285. (End)
Extensions
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
A049404 Triangle read by rows, the Bell transform of n!*binomial(2,n) (without column 0).
1, 2, 1, 2, 6, 1, 0, 20, 12, 1, 0, 40, 80, 20, 1, 0, 40, 360, 220, 30, 1, 0, 0, 1120, 1680, 490, 42, 1, 0, 0, 2240, 9520, 5600, 952, 56, 1, 0, 0, 2240, 40320, 48720, 15120, 1680, 72, 1, 0, 0, 0, 123200, 332640, 184800, 35280, 2760, 90, 1, 0, 0, 0, 246400, 1786400
Offset: 1
Comments
Previous name was: A triangle of numbers related to triangle A049324.
a(n,1) = A008279(2,n-1). a(n,m) =: S1(-2; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers).
a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A004747(n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
Examples
E.g. row polynomial E(3,x) = 2*x+6*x^2+x^3. Triangle starts: {1} {2, 1} {2, 6, 1} {0, 20, 12, 1}
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First 10 rows of the array and more. [From _Wolfdieter Lang_, Oct 17 2008]
- Peter Luschny, The Bell transform
Programs
-
Mathematica
rows = 11; a[n_, m_] := BellY[n, m, Table[k! Binomial[2, k], {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses[bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. bell_matrix(lambda n: factorial(n)*binomial(2, n), 8) # Peter Luschny, Jan 16 2016
Formula
a(n, m) = n!*A049324(n, m)/(m!*3^(n-m));
a(n, m) = (3*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: ((x+x^2+(x^3)/3)^m)/m!.
a(n,m) = n!/(3^m * m!)*(Sum_{i=0..floor(m-n/3)} (-1)^i * binomial(m,i) * binomial(3*m-3*i,n)), 0 for empty sums. - Werner Schulte, Feb 20 2020
Extensions
New name from Peter Luschny, Jan 16 2016
A059110 Triangle T = A007318*A271703; T(n,m)= Sum_{i=0..n} L'(n,i)*binomial(i,m), m=0..n.
1, 1, 1, 3, 4, 1, 13, 21, 9, 1, 73, 136, 78, 16, 1, 501, 1045, 730, 210, 25, 1, 4051, 9276, 7515, 2720, 465, 36, 1, 37633, 93289, 85071, 36575, 8015, 903, 49, 1, 394353, 1047376, 1053724, 519456, 137270, 20048, 1596, 64, 1, 4596553, 12975561
Offset: 0
Comments
L'(n,i) are unsigned Lah numbers (cf. A008297): L'(n,i)=n!/i!*binomial(n-1,i-1) for i >= 1, L'(0,0)=1, L'(n,0)=0 for n>0. T(n,0)=A000262(n); T(n,2)=A052852(n). Row sums A052897.
Exponential Riordan array [e^(x/(1-x)),x/(1-x)]. - Paul Barry, Apr 28 2007
From Wolfdieter Lang, Jun 22 2017: (Start)
The inverse matrix T^(-1) is exponential Riordan (aka Sheffer) (e^(-x), x/(1+x)): T^(-1)(n, m) = (-1)^(n-m)*A271705(n, m).
Examples
The triangle T = A007318*A271703 starts: n\m 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 1 1 2: 3 4 1 3: 13 21 9 1 4: 73 136 78 16 1 5: 501 1045 730 210 25 1 6: 4051 9276 7515 2720 465 36 1 7: 37633 93289 85071 36575 8015 903 49 1 8: 394353 1047376 1053724 519456 137270 20048 1596 64 1 9: 4596553 12975561 14196708 7836276 2404206 427518 44436 2628 81 1 ... reformatted. - _Wolfdieter Lang_, Jun 22 2017 E.g.f. for T(n, 2) = 1/2!*(x/(1-x))^2*e^(x/(x-1)) = 1*x^2/2 + 9*x^3/3! + 78*x^4/4! + 730*x^5/5! + 7515*x^6/6 + ... From _Wolfdieter Lang_, Jun 22 2017: (Start) The z-sequence starts: [1, 1/2, -2/3, 3/4, -4/5, 5/6, -6/7, 7/8, -8/9, ... T recurrence: T(3, 0) = 3*(1*T(2,0) + (1/2)*T(2, 1) + (-2/3)*T(2 ,1)) = 3*(3 + (1/2)*4 - (2/3)) = 13; T(3, 1) = 3*(T(2, 0)/1 + T(2, 1)) = 3*(3 + 4) = 21. Meixner type recurrence for R(2, x): (D - D^2)*(3 + 4*x + x^2) = 4 + 2*x - 2 = 2*(1 + x), (D = d/dx). General Sheffer recurrence for R(2, x): (1+x)*(1 + 2*D + D^2)*(1 + x) = (1+x)*(1 + x + 2) = 3 + 4*x + x^2. (End)
Links
- Muniru A Asiru, Rows n=0..50 of triangle, flattened
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Index entries for sequences related to Laguerre polynomials
Programs
-
GAP
Concatenation([1],Flat(List([1..10],n->List([0..n],m->Sum([0..n],i-> Factorial(n)/Factorial(i)*Binomial(n-1,i-1)*Binomial(i,m)))))); # Muniru A Asiru, Jul 25 2018
-
Magma
A059110:= func< n,k | n eq 0 select 1 else Factorial(n-1)*Binomial(n,k)*Evaluate(LaguerrePolynomial(n-1, 1-k), -1) >; [A059110(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
-
Maple
Lprime := proc(n,i) if n = 0 and i = 0 then 1; elif k = 0 then 0 ; else n!/i!*binomial(n-1,i-1) ; end if; end proc: A059110 := proc(n,k) add(Lprime(n,i)*binomial(i,k),i=0..n) ; end proc: # R. J. Mathar, Mar 15 2013
-
Mathematica
(* First program *) lp[n_, i_] := Binomial[n-1, i-1]*n!/i!; lp[0, 0] = 1; t[n_, m_] := Sum[lp[n, i]*Binomial[i, m], {i, 0, n}]; Table[t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Mar 26 2013 *) (* Second program *) A059110[n_, k_]:= If[n==0, 1, (n-1)!*Binomial[n, k]*LaguerreL[n-1, 1-k, -1]]; Table[A059110[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
-
Sage
def A059110(n, k): return 1 if n==0 else factorial(n-1)*binomial(n, k)*gen_laguerre(n-1, 1-k, -1) flatten([[A059110(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
Formula
E.g.f. for column m: (1/m!)*(x/(1-x))^m*e^(x/(x-1)), m >= 0.
From Wolfdieter Lang, Jun 22 2017: (Start)
E.g.f. for row polynomials in powers of x (e.g.f. of the triangle): exp(z/(1-z))* exp(x*z/(1-z)) (exponential Riordan).
Recurrence: T(n, 0) = Sum_{j=0} z(j)*T(n-1, j), n >= 1, with z(n) = (-1)^(n+1)*A028310(n), T(0, 0) = 1, T(n, m) = 0 n < m, T(n, m) = n*(T(n-1, m-1)/m + T(n-1, m)), n >= m >= 1 (from the z- and a-sequence, see a comment above).
Meixner type recurrence for the (monic) row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m: Sum_{k=0..n-1} (-1)^k*D^(k+1)*R(n, x) = n*R(n-1, x), n >=1, R(0, x) = 1, with D = d/dx.
General Sheffer recurrence: R(n, x) = (x+1)*(1+D)^2*R(n-1, x), n >=1, R(0, x) = 1.
(End)
P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of this entry; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - Tom Copeland, Jul 18 2018
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = (n-1)!*binomial(n, k)*LaguerreL(n-1, 1-k, -1) with T(0, 0) = 1.
Sum_{k=0..n} T(n, k) = A052897(n). (End)
A134134 Triangle of numbers obtained from the partition array A134133.
1, 2, 1, 6, 2, 1, 24, 10, 2, 1, 120, 36, 10, 2, 1, 720, 204, 44, 10, 2, 1, 5040, 1104, 228, 44, 10, 2, 1, 40320, 7776, 1272, 244, 44, 10, 2, 1, 362880, 57600, 8760, 1320, 244, 44, 10, 2, 1, 3628800, 505440, 63936, 9096, 1352, 244, 44, 10, 2, 1
Offset: 1
Comments
Examples
[1];[2,1];[6,2,1];[24,10,2,1];[120,36,10,2,1];... a(4,2)=10 from the sum over the numbers related to the partitions (1,3) and (2^2), namely 1!^1*3!^1 + 2!^2 = 6+4 = 10.
Links
- W. Lang, First 10 rows and more.
Formula
a(n,m)=sum(product(j!^e(n,m,k,j),j=1..n),k=1..p(n,m)) if n>=m>=1, else 0, with p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,k,j) is the exponent of j in the k-th m part partition of n.
Comments