1, 4, 1, 12, 12, 1, 24, 96, 24, 1, 24, 600, 360, 40, 1, 0, 3024, 4200, 960, 60, 1, 0, 12096, 40824, 17640, 2100, 84, 1, 0, 36288, 338688, 270144, 55440, 4032, 112, 1, 0, 72576, 2407104, 3580416, 1212624, 144144, 7056, 144, 1, 0, 72576, 14515200, 41791680
Offset: 1
E.g., row polynomial E(3,x) = 12*x + 12*x^2 + x^3.
Triangle starts:
1;
4, 1;
12, 12, 1;
24, 96, 24, 1;
24, 600, 360, 40, 1;
A086915
Triangle read by rows: T(n,k) = 2^k * (n!/k!)*binomial(n-1,k-1).
Original entry on oeis.org
2, 4, 4, 12, 24, 8, 48, 144, 96, 16, 240, 960, 960, 320, 32, 1440, 7200, 9600, 4800, 960, 64, 10080, 60480, 100800, 67200, 20160, 2688, 128, 80640, 564480, 1128960, 940800, 376320, 75264, 7168, 256, 725760, 5806080, 13547520, 13547520, 6773760, 1806336
Offset: 1
Triangle begins:
2;
4, 4;
12, 24, 8;
48, 144, 96, 16;
...
-
[Factorial(n)*Binomial(n-1,k-1)*2^k/Factorial(k): k in [1..n], n in [1..10]]; // G. C. Greubel, May 23 2018
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> 2*(n+1)!, 9); # Peter Luschny, Jan 26 2016
-
Flatten[Table[n!/k! Binomial[n-1,k-1]2^k,{n,10},{k,n}]] (* Harvey P. Dale, May 25 2011 *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[2*(#+1)!&, rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
for(n=1,10, for(k=1, n, print1(n!/k!*binomial(n-1,k-1)*2^k, ", "))) \\ G. C. Greubel, May 23 2018
A111598
Lah numbers: a(n) = n!*binomial(n-1,7)/8!.
Original entry on oeis.org
1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000, 100919250432000, 3088129063219200, 96012739965542400, 3040403432242176000, 98228418580131840000, 3241537813144350720000
Offset: 8
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
-
[Factorial(n-8)*Binomial(n,8)*Binomial(n-1,7): n in [8..35]]; // G. C. Greubel, May 10 2021
-
Table[(n-8)!*Binomial[n-1,7]*Binomial[n,8], {n,8,35}] (* G. C. Greubel, May 10 2021 *)
-
[factorial(n-8)*binomial(n,8)*binomial(n-1,7) for n in (8..35)] # G. C. Greubel, May 10 2021
A247500
Triangle read by rows: T(n, k) = n!*binomial(n + 1, k)/(k + 1)!, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 12, 6, 1, 24, 60, 40, 10, 1, 120, 360, 300, 100, 15, 1, 720, 2520, 2520, 1050, 210, 21, 1, 5040, 20160, 23520, 11760, 2940, 392, 28, 1, 40320, 181440, 241920, 141120, 42336, 7056, 672, 36, 1, 362880, 1814400, 2721600, 1814400, 635040, 127008, 15120, 1080, 45, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 12, 6, 1;
24, 60, 40, 10, 1;
120, 360, 300, 100, 15, 1;
720, 2520, 2520, 1050, 210, 21, 1;
-
a247500 n k = a247500_tabl !! n !! k
a247500_row n = a247500_tabl !! n
a247500_tabl = zipWith (zipWith div) a105278_tabl a004736_tabl
-- Reinhard Zumkeller, Oct 19 2014
-
/* triangle */ [[Factorial(n)/Factorial(k) * Binomial(n+2, k+1) /(n+2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 18 2014
-
T := (n,k) -> ((k+1)*(n+1)*GAMMA(n+1)^2)/(GAMMA(k+2)^2*GAMMA(n-k+2));
A247500 := (n, k) -> (n!/(k+1)!)*binomial(n + 1, k):
-
Table[((k + 1) (n + 1) Gamma[n + 1]^2)/(Gamma[k + 2]^2*
Gamma[n - k + 2]), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 19 2015 *)
A055924
Exponential transform of Stirling1 triangle A008275.
Original entry on oeis.org
1, -1, 2, 2, -6, 5, -6, 22, -30, 15, 24, -100, 175, -150, 52, -120, 548, -1125, 1275, -780, 203, 720, -3528, 8120, -11025, 9100, -4263, 877, -5040, 26136, -65660, 101535, -101920, 65366, -24556, 4140, 40320, -219168, 590620, -1009260, 1167348, -920808, 478842, -149040, 21147
Offset: 1
Triangle begins:
1;
-1, 2;
2, -6, 5;
-6, 22, -30, 15;
24, -100, 175, -150, 52;
...
|a(3,2)| = 6 because (12)(3), (12)|(3), (13)(2), (13)|(2), (23)(1), (23)|(1).
A145118
Denominator polynomials for continued fraction generating function for n!.
Original entry on oeis.org
1, 1, 1, -1, 1, -2, 1, -4, 2, 1, -6, 6, 1, -9, 18, -6, 1, -12, 36, -24, 1, -16, 72, -96, 24, 1, -20, 120, -240, 120, 1, -25, 200, -600, 600, -120, 1, -30, 300, -1200, 1800, -720, 1, -36, 450, -2400, 5400, -4320, 720, 1, -42, 630, -4200, 12600, -15120
Offset: 0
Triangle begins:
1;
1;
1, -1;
1, -2;
1, -4, 2;
1, -6, 6;
1, -9, 18, -6;
1, -12, 36, -24;
1, -16, 72, -96, 24;
1, -20, 120, -240, 120;
1, -25, 200, -600, 600, -120;
1, -30, 300, -1200, 1800, -720;
1, -36, 450, -2400, 5400, -4320, 720;
-
T:= (n, k)-> (-1)^k* binomial(iquo(n+1, 2),k) *binomial(iquo(n, 2), k)*k!:
seq (seq (T(n, k), k=0..iquo(n, 2)), n=0..16); # Alois P. Heinz, Dec 04 2012
A176021
Triangle T(n, k) = 1 - (-1)^n*(n! + 1) + A176013(n, k) + A176013(n, n-k+1) read by rows.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, 72, 72, 1, 1, -528, -678, -528, 1, 1, 4770, 6780, 6780, 4770, 1, 1, -48025, -87568, -68458, -87568, -48025, 1, 1, 524384, 1287776, 947520, 947520, 1287776, 524384, 1, 1, -6169282, -19982590, -18010942, -10305790, -18010942, -19982590, -6169282, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, -10, 1;
1, 72, 72, 1;
1, -528, -678, -528, 1;
1, 4770, 6780, 6780, 4770, 1;
1, -48025, -87568, -68458, -87568, -48025, 1;
1, 524384, 1287776, 947520, 947520, 1287776, 524384, 1;
1, -6169282, -19982590, -18010942, -10305790, -18010942, -19982590, -6169282, 1;
-
A176013:= func< n,k | (-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) >;
[1 - (-1)^n*(Factorial(n) + 1) + A176013(n, k) + A176013(n, n-k+1) : k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 08 2021
-
A176013[n_, k_]:= (-1)^n*(n!/(k*k!))*Binomial[n-1, k-1]*Binomial[n, k-1];
T[n_, m_]:= 1 - (-1)^n*(n! + 1) + A176013[n, k] + A176013[n, n-k+1];
Table[T[n, k], {n, 12}, {k, n}]//Flatten
-
def A176013(n, k): return (-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1)
flatten([[1 - (-1)^n*(factorial(n) + 1) + A176013(n, k) + A176013(n, n-k+1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 08 2021
Comments