cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A280202 Number of topologies on an n-set X such that for all x in X there is a y in X such that x and y are topologically indistinguishable.

Original entry on oeis.org

1, 0, 1, 1, 10, 31, 361, 2164, 32663, 313121, 6199024, 86219497, 2225685925, 42396094690, 1414152064833, 35520966967269, 1517860883350266, 48936884016265947, 2659543345912283917, 107827798819822505332, 7409614386025588874195, 371626299919138199117981
Offset: 0

Views

Author

Geoffrey Critzer, Dec 28 2016

Keywords

Comments

Equivalently a(n) is the number of topologies on an n-set X such that for all x in X there is a y in X such that x and y have exactly the same neighborhoods.

Examples

			a(4) = 10 because letting X = {a,b,c,d} we have the trivial topology; {{},{b,c},{a,d},X} * 3; and {{},{a,b},X} *6.
		

Crossrefs

Column k=0 of A280192.

Formula

E.g.f.: A(exp(x) - 1 - x) where A(x) is the e.g.f. for A001035.
a(n) = Sum_{k=0..floor(n/2)} A008299(n,k)*A001035(k).

Extensions

a(19)-a(21) from Pontus von Brömssen, Apr 05 2023

A000497 S2(j,2j+2) where S2(n,k) is a 2-associated Stirling number of the second kind.

Original entry on oeis.org

1, 25, 490, 9450, 190575, 4099095, 94594500, 2343240900, 62199262125, 1764494857125, 53338158823950, 1712934942468750, 58274046742786875, 2094379201311271875, 79318164037837725000, 3157886388887074845000
Offset: 1

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    gf := (u,t)->exp(u*(exp(t)-1-t)); S2a := j->simplify(subs(u=0,t=0,diff(gf(u,t),u$j,t$(2*j+2)))/j!); for i from 1 to 20 do S2a(i); od;
    # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000
  • Mathematica
    t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!), {j, 0, k-i}], {i, 0, k}]; Table[ t[2n+2, n], {n, 1, 16}  ](* Jean-François Alcover, Feb 24 2012 *)
    Table[n*(n+1)*(2*n+1)*2^n*Gamma[n+3/2]/(9*Sqrt[Pi]),{n,1,20}] (* Vaclav Kotesovec, Aug 07 2013 *)

Formula

G.f.: x*(4*x+1)*hypergeom([3, 7/2],[],2*x)+28*x^3*hypergeom([4, 9/2],[],2*x). - Mark van Hoeij, Apr 07 2013
a(n) = n*(n+1)*(2*n+1)*2^n*GAMMA(n+3/2)/(9*sqrt(Pi)). - Vaclav Kotesovec, Aug 07 2013
(2*n-1)*(n-1)*a(n) -(n+1)*(1+2*n)^2*a(n-1)=0. - R. J. Mathar, Jun 09 2018

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000

A259877 If n is even then a(n) = n!/( 2^(n/2)*(n/2)! ), otherwise a(n) = n!/( 3*2^((n-1)/2)*((n-3)/2)! ).

Original entry on oeis.org

1, 1, 3, 10, 15, 105, 105, 1260, 945, 17325, 10395, 270270, 135135, 4729725, 2027025, 91891800, 34459425, 1964187225, 654729075, 45831035250, 13749310575, 1159525191825, 316234143225, 31623414322500, 7905853580625, 924984868933125, 213458046676875, 28887988983603750, 6190283353629375
Offset: 2

Views

Author

N. J. A. Sloane, Jul 09 2015

Keywords

Crossrefs

A001147 alternating with A000457. Interlaced diagonal of A008299.

Programs

  • Maple
    f:=proc(n) if n mod 2 = 0 then
    n!/(2^(n/2)*(n/2)!) else
    n!/( 3*2^((n-1)/2)*((n-3)/2)! ); fi; end;
    [seq(f(n),n=2..30)];
  • Mathematica
    Table[(n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!), {n, 2, 30}] (* Wesley Ivan Hurt, Jul 10 2015 *)
  • PARI
    main(size)={v=vector(size);for(n=2, size+1, if(n%2==0, v[n-1]=n!/(2^(n/2)*(n/2)!), v[n-1]=n!/( 3*2^((n-1)/2)*((n-3)/2)!))); return(v);} /* Anders Hellström, Jul 10 2015 */
    
  • Python
    from _future_ import division
    A259877_list, a = [1], 1
    for n in range(2,10**2):
        a = 6*a//(n-1) if n % 2 else a*n*(n+1)//6
        A259877_list.append(a) # Chai Wah Wu, Jul 15 2015

Formula

a(n) = (n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!). - Wesley Ivan Hurt, Jul 10 2015
a(n+1) = a(n)*n*(n+1)/6 if n is even, a(n+1) = 6*a(n)/(n-1) if n is odd. - Chai Wah Wu, Jul 15 2015
a(2*n) = A001147(n), a(2*n+1) = A000457(n-1). - Yuchun Ji, Nov 02 2020

A291104 Number of maximal irredundant sets in the n X n rook graph.

Original entry on oeis.org

1, 6, 48, 632, 10130, 194292, 4730810, 145114944, 5529662802, 256094790500, 14038667879522, 890349688082736, 64160617557387338, 5183023418382933060, 464623151635449639450, 45857185726197195813632, 4951604249874284663582498, 581839639424819461006405956
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Crossrefs

Main diagonal of A291543.

Programs

  • Mathematica
    (* Start *)
    s[n_, k_] := Sum[(-1)^i Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}]
    p[m_, n_, x_] := Sum[Binomial[m, k] Binomial[n, j] k! s[n - j, k - 1] j! StirlingS2[m - k, j - 1] x^(m + n - j - k), {k, 2, m - 2}, {j, 2, m - k}]
    a[n_] := 2 n^n - n! + p[n, n, 1]
    Array[a, 20]
    (* End *)
  • PARI
    \\ here s(n, k) is A008299, 2*n^n - n! is A248744.
    s(n, k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
    p(m, n, x)={sum(k=2, m-2, sum(j=2, m-k, binomial(m, k) * binomial(n, j) * k! * s(n-j, k-1) * j! * stirling(m-k, j-1, 2) * x^(m+n-j-k) ))}
    a(n) = 2*n^n - n! + p(n,n,1); \\ Andrew Howroyd, Aug 25 2017

Formula

a(n) = 2*n^n - n! + Sum_{k=2..n-2} Sum_{j=2..n-k} binomial(n,k) * binomial(n,j) * k! * A008299(n-j,k-1) * j! * stirling2(n-k,j-1). - Andrew Howroyd, Aug 25 2017

Extensions

Terms a(5) and beyond from Andrew Howroyd, Aug 25 2017

A291543 Array read by antidiagonals: T(m,n) = number of maximal irredundant sets in the lattice (rook) graph K_m X K_n.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 11, 11, 4, 5, 18, 48, 18, 5, 6, 27, 109, 109, 27, 6, 7, 38, 218, 632, 218, 38, 7, 8, 51, 405, 1649, 1649, 405, 51, 8, 9, 66, 724, 4192, 10130, 4192, 724, 66, 9, 10, 83, 1277, 10889, 34801, 34801, 10889, 1277, 83, 10
Offset: 1

Views

Author

Andrew Howroyd, Aug 25 2017

Keywords

Comments

Maximal irredundant sets can be either dominating or not. The dominating maximal irredundant sets are the minimal dominating sets (A290632). The non-dominating maximal irredundant sets are those irredundant sets that have exactly one empty row and one empty column and at least one row and one column with more than one element. See note in A290586 for some additional details.

Examples

			Array begins:
=========================================================
m\n| 1  2    3     4      5       6        7         8
---|-----------------------------------------------------
1  | 1  2    3     4      5       6        7         8...
2  | 2  6   11    18     27      38       51        66...
3  | 3 11   48   109    218     405      724      1277...
4  | 4 18  109   632   1649    4192    10889     29480...
5  | 5 27  218  1649  10130   34801   116772    402673...
6  | 6 38  405  4192  34801  194292   856225   3804880...
7  | 7 51  724 10889 116772  856225  4730810  24810465...
8  | 8 66 1277 29480 402673 3804880 24810465 145114944...
...
		

Crossrefs

Main diagonal is A291104.

Programs

  • Mathematica
    T32[n_, k_] := n^k + k^n - Min[n, k]!*StirlingS2[Max[n, k], Min[n, k]];
    T99[n_, k_] := Sum[(-1)^i*Binomial[n, i]*Sum[(-1)^j*((k - i - j)^(n - i)/(j!*(k - i - j)!)), {j, 0, k - i}], {i, 0, k}];
    T[m_, n_] /; n >= m := T32[m, n] + Sum[Sum[Binomial[m, k]*Binomial[n, j]*k!*T99[n - j, k - 1]*j!*StirlingS2[m - k, j - 1], {j, 2, m - k}], {k, 2, m - 2}]; T[m_, n_] /; n < m := T[n, m];
    Table[T[m - n + 1, n], {m, 1, 10}, {n, 1, m}] // Flatten(* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    \\ here s(n,k) is A008299(n,k) and b(m,n,1) is A290632(m,n).
    s(n, k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
    b(m, n, x) = m^n*x^n + n^m*x^m - if(n<=m, n!*x^m*stirling(m, n, 2), m!*x^n*stirling(n, m, 2));
    p(m, n, x)={sum(k=2, m-2, sum(j=2, m-k, binomial(m, k) * binomial(n, j) * k! * s(n-j, k-1) * j! * stirling(m-k, j-1, 2) * x^(m+n-j-k) ))}
    T(m, n) = b(m, n, 1) + p(m, n, 1);

Formula

T(m,n) = A290632(m, n) + Sum_{k=2..m-2} Sum_{j=2..m-k} binomial(m,k) * binomial(n,j) * k! * A008299(n-j,k-1) * j! * stirling2(m-k,j-1).

A352607 Triangle read by rows. T(n, k) = Bell(k)*Sum_{j=0..k}(-1)^(k+j)*binomial(n, n-k+j)*Stirling2(n-k+j, j) for n >= 0 and 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 6, 0, 1, 20, 0, 1, 50, 75, 0, 1, 112, 525, 0, 1, 238, 2450, 1575, 0, 1, 492, 9590, 18900, 0, 1, 1002, 34125, 141750, 49140, 0, 1, 2024, 114675, 854700, 900900, 0, 1, 4070, 371580, 4544925, 9909900, 2110185
Offset: 0

Views

Author

Peter Luschny and Mélika Tebni, Mar 23 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 1;
[4] 0, 1,   6;
[5] 0, 1,  20;
[6] 0, 1,  50,   75;
[7] 0, 1, 112,  525;
[8] 0, 1, 238, 2450,  1575;
[9] 0, 1, 492, 9590, 18900;
		

Crossrefs

Cf. A028248 (row sums), A052515 (column 2), A081066, A008299, A000110, A137375.

Programs

  • Maple
    A352607 := (n, k) -> combinat:-bell(k)*add((-1)^(k+j)*binomial(n, n-k+j)* Stirling2(n-k+j, j), j = 0..k):
    seq(seq(A352607(n, k), k = 0..n/2), n = 0..12);
    # Second program:
    egf := k -> combinat[bell](k)*(exp(x) - 1 - x)^k/k!:
    A352607 := (n, k) -> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A352607(n, k), k = 0..n/2)), n=0..12);
    # Recurrence:
    A352607 := proc(n, k) option remember;
    if k > n/2 then 0 elif k = 0 then k^n else k*A352607(n-1, k) +
    combinat[bell](k)/combinat[bell](k-1)*(n-1)*A352607(n-2, k-1) fi end:
    seq(print(seq(A352607(n, k), k=0..n/2)), n=0..12); # Mélika Tebni, Mar 24 2022
  • Mathematica
    T[n_, k_] := BellB[k]*Sum[(-1)^(k+j)*Binomial[n, n-k+j]*StirlingS2[n-k+j, j], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Oct 21 2023 *)

Formula

T(n, k) = (-1)^k*A000110(k)*A137375(n, k) = A000110(k)*A008299(n, k).
T(2*n, n) = A081066(n).
E.g.f. column k: Bell(k)*(exp(x) - 1 - x)^k / k!, k >= 0.
T(n, k) = Bell(k)*Sum_{j=0..k} Sum_{i=0..j} ((-1)^j*(k-j)^(n-i)*binomial(n, i)) / ((k - j)!*(j - i)!).

A358623 Regular triangle read by rows. T(n, k) = {{n, k}}, where {{n, k}} are the second order Stirling set numbers (or second order Stirling numbers). T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 10, 0, 0, 0, 0, 1, 25, 15, 0, 0, 0, 0, 1, 56, 105, 0, 0, 0, 0, 0, 1, 119, 490, 105, 0, 0, 0, 0, 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0, 0, 1, 501, 6825, 9450, 945, 0, 0, 0, 0, 0, 0, 1, 1012, 22935, 56980, 17325, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Peter Luschny, Nov 25 2022

Keywords

Comments

{{n, k}} are the number of k-quotient sets of an n-set having at least two elements in each equivalence class. This is the definition and notation (doubling the stacked delimiters of the Stirling set numbers) as given by Fekete (see link).
The formal definition expresses the second order Stirling set numbers as a binomial sum over second order Eulerian numbers (see the first formula below). The terminology 'associated Stirling numbers of second kind' used elsewhere should be dropped in favor of the more systematic one used here.
Also the Bell transform of sign(n) for n >= 0. For the definition of the Bell transform see A264428.

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0, 0;
[2] 0, 1,   0;
[3] 0, 1,   0,    0;
[4] 0, 1,   3,    0,    0;
[5] 0, 1,  10,    0,    0,  0;
[6] 0, 1,  25,   15,    0,  0,  0;
[7] 0, 1,  56,  105,    0,  0,  0,  0;
[8] 0, 1, 119,  490,  105,  0,  0,  0,  0;
[9] 0, 1, 246, 1918, 1260,  0,  0,  0,  0,  0;
		

References

  • Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994, thirty-fourth printing 2022.

Crossrefs

A008299 is an irregular subtriangle with more information.
A358622 (second order Stirling cycle numbers).
Cf. A000296 (row sums), alternating row sums (apart from sign): A000587, A293037, and A014182.

Programs

  • Maple
    T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j)*(-1)^(k - j),
    j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Using the e.g.f.:
    egf := exp(z*(exp(t) - t - 1)): ser := series(egf, t, 12):
    seq(print(seq(n!*coeff(coeff(ser, t, n), z, k), k = 0..n)), n = 0..9);
    # Using second order Eulerian numbers:
    A358623 := proc(n, k) if n = 0 then return 1 fi;
    add(binomial(j, n - 2*k)*combinat:-eulerian2(n - k, n - k - j - 1), j = 0..n-k-1)
    end: seq(seq(A358623(n, k), k = 0..n), n = 0..11);
  • Python
    # recursion over rows
    from functools import cache
    @cache
    def StirlingSetOrd2(n: int) -> list[int]:
        if n == 0: return [1]
        if n == 1: return [0, 0]
        rov: list[int] = StirlingSetOrd2(n - 2)
        row: list[int] = StirlingSetOrd2(n - 1) + [0]
        for k in range(1, n // 2 + 1):
            row[k] = (n - 1) * rov[k - 1] + k * row[k]
        return row
    for n in range(9): print(StirlingSetOrd2(n))
    # Alternative, using function BellMatrix from A264428.
    def f(k: int) -> int:
        return 1 if k > 0 else 0
    print(BellMatrix(f, 9))

Formula

T(n, k) = Sum_{j=0..k} (-1)^(k - j)*binomial(j, k - j)*<>, where <> denote the second order Eulerian numbers (extending Knuth's notation).
T(n, k) = n!*[z^k][t^n] exp(z*(exp(t) - t - 1)).
T(n, k) = Sum_{j=0..k} (-1)^(k - j)*binomial(n, k - j)*{n - k + j, j}, where {n, k} denotes the Stirling set numbers.
T(n, k) = (n - 1) * T(n-2, k-1) + k * T(n-1, k) with suitable boundary conditions.
T(n + k, k) = A269939(n, k), which might be called the Ward set numbers.

A376544 a(n) is the number of singleton commuting ordered set partitions.

Original entry on oeis.org

1, 1, 2, 8, 40, 242, 1784, 15374, 151008, 1669010, 20503768, 277049126, 4083693200, 65211041690, 1121435565384, 20662801363790, 406100030507200, 8480197575505442, 187500501495191480, 4376026842424336886, 107506303414618515696, 2773174380946415844266
Offset: 0

Views

Author

Raul Penaguiao, Sep 27 2024

Keywords

Comments

a(n) is also the dimension of the span of chromatic quasi-symmetric invariants of generalized permutahedra.

Examples

			a(2) = 2 because the ordered set partitions 1|2 and 2|1 are counted only once.
a(3) = 8, all ordered set partitions with length 3 (e.g. 1|2|3) are counted only once.
a(4) = 40 counts 1|34|2 separately to 2|34|1, but treats 1|2|34 as the same as 2|1|34 since only adjacent singletons can commute.
		

Crossrefs

Corresponds to a subset of elements counted in A000670.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, 1/p!, add(
          b(n-j, 0)*binomial(n, j)/p!, j=2..n)+b(n-1, p+1)*n)
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..21);  # Alois P. Heinz, Nov 19 2024
  • PARI
    \\ here B(n,k) is A008299 or A358623.
    B(n, k) = {sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); }
    a(n)={sum(k=0, n, binomial(n,k)*sum(j=0, k\2, B(k,j)*j!*(j+1)^(n-k)))} \\ Andrew Howroyd, Sep 27 2024
    
  • PARI
    seq(n)=my(g=exp(x + O(x*x^n))); Vec(serlaplace(g/(1 - g*(g-x-1)))) \\ Andrew Howroyd, Sep 27 2024

Formula

Asymptotic growth: a(n) = n! * b^(-n) * c, where b is the unique positive root of exp(2*x) = 1 + e^x + x*e^x, and c is 0.722487... .
From Andrew Howroyd, Sep 27 2024: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} binomial(n,k)*A358623(k,j)*j!*(j+1)^(n-k).
E.g.f.: exp(x)/(1 - exp(x)*(exp(x)-x-1)). (End)
In the notation above, c = 1/(b*(2*exp(b) - b - 2)). - Vaclav Kotesovec, Nov 21 2024

Extensions

a(10) onwards from Andrew Howroyd, Sep 27 2024

A000504 S2(j,2j+3) where S2(n,k) is a 2-associated Stirling number of the second kind.

Original entry on oeis.org

1, 56, 1918, 56980, 1636635, 47507460, 1422280860, 44346982680, 1446733012725, 49473074851200, 1774073543492250, 66681131440423500, 2624634287988087375, 108060337458000427500, 4647703259223579555000, 208548093035794902390000, 9749651260035434678555625
Offset: 1

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.

Crossrefs

Programs

  • Maple
    gf := (u,t)->exp(u*(exp(t)-1-t)); S2a := j->simplify(subs(u=0,t=0,diff(gf(u,t),u$j,t$(2*j+3)))/j!); for i from 1 to 20 do S2a(i); od; # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000
  • Mathematica
    a[n_] := n (n+1) (10n^2+15n+2) (2n+3)!! / 810; Array[a, 20] (* Jean-François Alcover, Feb 09 2016, after Mark van Hoeij *)

Formula

It appears a(n) = 2^(n+1)*GAMMA(n+5/2)*(n^2+n)*(10*n^2+15*n+2)/(405*Pi^(1/2)). - Mark van Hoeij, Oct 26 2011.
G.f.: x*(7*(5-30*x) * hypergeom([4, 9/2],[],2*x) - 26*hypergeom([3, 7/2],[],2*x))/9. - Mark van Hoeij, Apr 07 2013
(n-1)*(10*n^2-5*n-3)*a(n) - (2*n+3)*(n+1)*(10*n^2+15*n+2)*a(n-1) = 0. - R. J. Mathar, Jun 09 2018

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000

A171738 Number of n-digit terms in A115853.

Original entry on oeis.org

0, 9, 9, 252, 819, 11754, 72585, 803448, 6978159, 73047510, 744922341, 8023947732, 88219609227, 993117723282, 11397388906305, 132852212160624, 1568346473860839, 18699577205645646, 224600363892164061, 2711096523623447820, 32815659723020049411, 397495008150096639114
Offset: 1

Views

Author

Zak Seidov, Dec 17 2009

Keywords

Crossrefs

Cf. A115853 (numbers where every present decimal digit occurs more than once).

Programs

  • Mathematica
    Table[9 Sum[k! Binomial[9, k] (-1)^i Binomial[n, i] StirlingS2[n - i, k - i + 1], {k, 0, 9}, {i, 0, Min[n, k + 1]}], {n, 21}] (* Matthew House, Sep 06 2020 *)

Formula

From Matthew House, Sep 13 2020: (Start)
a(n) = Sum_{k=0..9} k!*C(9,k)*(S_2(n,k) + k*S_2(n,k+1)) = 9*Sum_{k=0..9} k!*C(9,k)*S_2(n,k+1), where S_2(n,k) = A008299(n,k).
a(n) = 9*Sum_{k=0..10} (-1)^k*9!/(10-k)!*C(n,k)*(10-k)^(n-k) for n >= 10, where 0^0 = 1.
All terms from a(11) onward satisfy a linear recurrence with characteristic polynomial (1-x)^10*(2-x)^9*(3-x)^8*(4-x)^7*(5-x)^6*(6-x)^5*(7-x)^4*(8-x)^3*(9-x)^2*(10-x). (End)

Extensions

More terms from Matthew House, Sep 06 2020
Previous Showing 21-30 of 33 results. Next