A280202
Number of topologies on an n-set X such that for all x in X there is a y in X such that x and y are topologically indistinguishable.
Original entry on oeis.org
1, 0, 1, 1, 10, 31, 361, 2164, 32663, 313121, 6199024, 86219497, 2225685925, 42396094690, 1414152064833, 35520966967269, 1517860883350266, 48936884016265947, 2659543345912283917, 107827798819822505332, 7409614386025588874195, 371626299919138199117981
Offset: 0
a(4) = 10 because letting X = {a,b,c,d} we have the trivial topology; {{},{b,c},{a,d},X} * 3; and {{},{a,b},X} *6.
A000497
S2(j,2j+2) where S2(n,k) is a 2-associated Stirling number of the second kind.
Original entry on oeis.org
1, 25, 490, 9450, 190575, 4099095, 94594500, 2343240900, 62199262125, 1764494857125, 53338158823950, 1712934942468750, 58274046742786875, 2094379201311271875, 79318164037837725000, 3157886388887074845000
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- H. W. Gould, Harris Kwong, Jocelyn Quaintance, On Certain Sums of Stirling Numbers with Binomial Coefficients, J. Integer Sequences, 18 (2015), #15.9.6.
- M. Ward, The representations of Stirling's numbers and Stirling's polynomials as sums of factorials, Amer. J. Math., 56 (1934), p. 87-95.
-
gf := (u,t)->exp(u*(exp(t)-1-t)); S2a := j->simplify(subs(u=0,t=0,diff(gf(u,t),u$j,t$(2*j+2)))/j!); for i from 1 to 20 do S2a(i); od;
# Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000
-
t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!), {j, 0, k-i}], {i, 0, k}]; Table[ t[2n+2, n], {n, 1, 16} ](* Jean-François Alcover, Feb 24 2012 *)
Table[n*(n+1)*(2*n+1)*2^n*Gamma[n+3/2]/(9*Sqrt[Pi]),{n,1,20}] (* Vaclav Kotesovec, Aug 07 2013 *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000
A259877
If n is even then a(n) = n!/( 2^(n/2)*(n/2)! ), otherwise a(n) = n!/( 3*2^((n-1)/2)*((n-3)/2)! ).
Original entry on oeis.org
1, 1, 3, 10, 15, 105, 105, 1260, 945, 17325, 10395, 270270, 135135, 4729725, 2027025, 91891800, 34459425, 1964187225, 654729075, 45831035250, 13749310575, 1159525191825, 316234143225, 31623414322500, 7905853580625, 924984868933125, 213458046676875, 28887988983603750, 6190283353629375
Offset: 2
- Chai Wah Wu, Table of n, a(n) for n = 2..501
- D. L. Andrews, Letter to N. J. A. Sloane, Apr 10 1978.
- D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033. See N_n.
- D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033. [Annotated scanned copy]
-
f:=proc(n) if n mod 2 = 0 then
n!/(2^(n/2)*(n/2)!) else
n!/( 3*2^((n-1)/2)*((n-3)/2)! ); fi; end;
[seq(f(n),n=2..30)];
-
Table[(n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!), {n, 2, 30}] (* Wesley Ivan Hurt, Jul 10 2015 *)
-
main(size)={v=vector(size);for(n=2, size+1, if(n%2==0, v[n-1]=n!/(2^(n/2)*(n/2)!), v[n-1]=n!/( 3*2^((n-1)/2)*((n-3)/2)!))); return(v);} /* Anders Hellström, Jul 10 2015 */
-
from _future_ import division
A259877_list, a = [1], 1
for n in range(2,10**2):
a = 6*a//(n-1) if n % 2 else a*n*(n+1)//6
A259877_list.append(a) # Chai Wah Wu, Jul 15 2015
A291104
Number of maximal irredundant sets in the n X n rook graph.
Original entry on oeis.org
1, 6, 48, 632, 10130, 194292, 4730810, 145114944, 5529662802, 256094790500, 14038667879522, 890349688082736, 64160617557387338, 5183023418382933060, 464623151635449639450, 45857185726197195813632, 4951604249874284663582498, 581839639424819461006405956
Offset: 1
-
(* Start *)
s[n_, k_] := Sum[(-1)^i Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}]
p[m_, n_, x_] := Sum[Binomial[m, k] Binomial[n, j] k! s[n - j, k - 1] j! StirlingS2[m - k, j - 1] x^(m + n - j - k), {k, 2, m - 2}, {j, 2, m - k}]
a[n_] := 2 n^n - n! + p[n, n, 1]
Array[a, 20]
(* End *)
-
\\ here s(n, k) is A008299, 2*n^n - n! is A248744.
s(n, k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
p(m, n, x)={sum(k=2, m-2, sum(j=2, m-k, binomial(m, k) * binomial(n, j) * k! * s(n-j, k-1) * j! * stirling(m-k, j-1, 2) * x^(m+n-j-k) ))}
a(n) = 2*n^n - n! + p(n,n,1); \\ Andrew Howroyd, Aug 25 2017
A291543
Array read by antidiagonals: T(m,n) = number of maximal irredundant sets in the lattice (rook) graph K_m X K_n.
Original entry on oeis.org
1, 2, 2, 3, 6, 3, 4, 11, 11, 4, 5, 18, 48, 18, 5, 6, 27, 109, 109, 27, 6, 7, 38, 218, 632, 218, 38, 7, 8, 51, 405, 1649, 1649, 405, 51, 8, 9, 66, 724, 4192, 10130, 4192, 724, 66, 9, 10, 83, 1277, 10889, 34801, 34801, 10889, 1277, 83, 10
Offset: 1
Array begins:
=========================================================
m\n| 1 2 3 4 5 6 7 8
---|-----------------------------------------------------
1 | 1 2 3 4 5 6 7 8...
2 | 2 6 11 18 27 38 51 66...
3 | 3 11 48 109 218 405 724 1277...
4 | 4 18 109 632 1649 4192 10889 29480...
5 | 5 27 218 1649 10130 34801 116772 402673...
6 | 6 38 405 4192 34801 194292 856225 3804880...
7 | 7 51 724 10889 116772 856225 4730810 24810465...
8 | 8 66 1277 29480 402673 3804880 24810465 145114944...
...
-
T32[n_, k_] := n^k + k^n - Min[n, k]!*StirlingS2[Max[n, k], Min[n, k]];
T99[n_, k_] := Sum[(-1)^i*Binomial[n, i]*Sum[(-1)^j*((k - i - j)^(n - i)/(j!*(k - i - j)!)), {j, 0, k - i}], {i, 0, k}];
T[m_, n_] /; n >= m := T32[m, n] + Sum[Sum[Binomial[m, k]*Binomial[n, j]*k!*T99[n - j, k - 1]*j!*StirlingS2[m - k, j - 1], {j, 2, m - k}], {k, 2, m - 2}]; T[m_, n_] /; n < m := T[n, m];
Table[T[m - n + 1, n], {m, 1, 10}, {n, 1, m}] // Flatten(* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
-
\\ here s(n,k) is A008299(n,k) and b(m,n,1) is A290632(m,n).
s(n, k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
b(m, n, x) = m^n*x^n + n^m*x^m - if(n<=m, n!*x^m*stirling(m, n, 2), m!*x^n*stirling(n, m, 2));
p(m, n, x)={sum(k=2, m-2, sum(j=2, m-k, binomial(m, k) * binomial(n, j) * k! * s(n-j, k-1) * j! * stirling(m-k, j-1, 2) * x^(m+n-j-k) ))}
T(m, n) = b(m, n, 1) + p(m, n, 1);
A352607
Triangle read by rows. T(n, k) = Bell(k)*Sum_{j=0..k}(-1)^(k+j)*binomial(n, n-k+j)*Stirling2(n-k+j, j) for n >= 0 and 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 0, 1, 6, 0, 1, 20, 0, 1, 50, 75, 0, 1, 112, 525, 0, 1, 238, 2450, 1575, 0, 1, 492, 9590, 18900, 0, 1, 1002, 34125, 141750, 49140, 0, 1, 2024, 114675, 854700, 900900, 0, 1, 4070, 371580, 4544925, 9909900, 2110185
Offset: 0
Triangle starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 1;
[4] 0, 1, 6;
[5] 0, 1, 20;
[6] 0, 1, 50, 75;
[7] 0, 1, 112, 525;
[8] 0, 1, 238, 2450, 1575;
[9] 0, 1, 492, 9590, 18900;
-
A352607 := (n, k) -> combinat:-bell(k)*add((-1)^(k+j)*binomial(n, n-k+j)* Stirling2(n-k+j, j), j = 0..k):
seq(seq(A352607(n, k), k = 0..n/2), n = 0..12);
# Second program:
egf := k -> combinat[bell](k)*(exp(x) - 1 - x)^k/k!:
A352607 := (n, k) -> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A352607(n, k), k = 0..n/2)), n=0..12);
# Recurrence:
A352607 := proc(n, k) option remember;
if k > n/2 then 0 elif k = 0 then k^n else k*A352607(n-1, k) +
combinat[bell](k)/combinat[bell](k-1)*(n-1)*A352607(n-2, k-1) fi end:
seq(print(seq(A352607(n, k), k=0..n/2)), n=0..12); # Mélika Tebni, Mar 24 2022
-
T[n_, k_] := BellB[k]*Sum[(-1)^(k+j)*Binomial[n, n-k+j]*StirlingS2[n-k+j, j], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Oct 21 2023 *)
A358623
Regular triangle read by rows. T(n, k) = {{n, k}}, where {{n, k}} are the second order Stirling set numbers (or second order Stirling numbers). T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 10, 0, 0, 0, 0, 1, 25, 15, 0, 0, 0, 0, 1, 56, 105, 0, 0, 0, 0, 0, 1, 119, 490, 105, 0, 0, 0, 0, 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0, 0, 1, 501, 6825, 9450, 945, 0, 0, 0, 0, 0, 0, 1, 1012, 22935, 56980, 17325, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 0;
[2] 0, 1, 0;
[3] 0, 1, 0, 0;
[4] 0, 1, 3, 0, 0;
[5] 0, 1, 10, 0, 0, 0;
[6] 0, 1, 25, 15, 0, 0, 0;
[7] 0, 1, 56, 105, 0, 0, 0, 0;
[8] 0, 1, 119, 490, 105, 0, 0, 0, 0;
[9] 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0;
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994, thirty-fourth printing 2022.
A008299 is an irregular subtriangle with more information.
A358622 (second order Stirling cycle numbers).
-
T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j)*(-1)^(k - j),
j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Using the e.g.f.:
egf := exp(z*(exp(t) - t - 1)): ser := series(egf, t, 12):
seq(print(seq(n!*coeff(coeff(ser, t, n), z, k), k = 0..n)), n = 0..9);
# Using second order Eulerian numbers:
A358623 := proc(n, k) if n = 0 then return 1 fi;
add(binomial(j, n - 2*k)*combinat:-eulerian2(n - k, n - k - j - 1), j = 0..n-k-1)
end: seq(seq(A358623(n, k), k = 0..n), n = 0..11);
-
# recursion over rows
from functools import cache
@cache
def StirlingSetOrd2(n: int) -> list[int]:
if n == 0: return [1]
if n == 1: return [0, 0]
rov: list[int] = StirlingSetOrd2(n - 2)
row: list[int] = StirlingSetOrd2(n - 1) + [0]
for k in range(1, n // 2 + 1):
row[k] = (n - 1) * rov[k - 1] + k * row[k]
return row
for n in range(9): print(StirlingSetOrd2(n))
# Alternative, using function BellMatrix from A264428.
def f(k: int) -> int:
return 1 if k > 0 else 0
print(BellMatrix(f, 9))
A376544
a(n) is the number of singleton commuting ordered set partitions.
Original entry on oeis.org
1, 1, 2, 8, 40, 242, 1784, 15374, 151008, 1669010, 20503768, 277049126, 4083693200, 65211041690, 1121435565384, 20662801363790, 406100030507200, 8480197575505442, 187500501495191480, 4376026842424336886, 107506303414618515696, 2773174380946415844266
Offset: 0
a(2) = 2 because the ordered set partitions 1|2 and 2|1 are counted only once.
a(3) = 8, all ordered set partitions with length 3 (e.g. 1|2|3) are counted only once.
a(4) = 40 counts 1|34|2 separately to 2|34|1, but treats 1|2|34 as the same as 2|1|34 since only adjacent singletons can commute.
- Alois P. Heinz, Table of n, a(n) for n = 0..435
- Vladimir Grujić, Counting faces of graphical zonotopes, Ars Math. Contemp., 13(1), 2017; arXiv preprint, arXiv:1604.06931 [math.CO], 2017.
- Raul Penaguiao, The kernel of chromatic quasisymmetric functions on graphs and hypergraphic polytopes, Journal of Combinatorial Theory, Series A, 175, 105258, 2020.
Corresponds to a subset of elements counted in
A000670.
-
b:= proc(n, p) option remember; `if`(n=0, 1/p!, add(
b(n-j, 0)*binomial(n, j)/p!, j=2..n)+b(n-1, p+1)*n)
end:
a:= n-> b(n, 0):
seq(a(n), n=0..21); # Alois P. Heinz, Nov 19 2024
-
\\ here B(n,k) is A008299 or A358623.
B(n, k) = {sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); }
a(n)={sum(k=0, n, binomial(n,k)*sum(j=0, k\2, B(k,j)*j!*(j+1)^(n-k)))} \\ Andrew Howroyd, Sep 27 2024
-
seq(n)=my(g=exp(x + O(x*x^n))); Vec(serlaplace(g/(1 - g*(g-x-1)))) \\ Andrew Howroyd, Sep 27 2024
A000504
S2(j,2j+3) where S2(n,k) is a 2-associated Stirling number of the second kind.
Original entry on oeis.org
1, 56, 1918, 56980, 1636635, 47507460, 1422280860, 44346982680, 1446733012725, 49473074851200, 1774073543492250, 66681131440423500, 2624634287988087375, 108060337458000427500, 4647703259223579555000, 208548093035794902390000, 9749651260035434678555625
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.
- H. W. Gould, Harris Kwong, Jocelyn Quaintance, On Certain Sums of Stirling Numbers with Binomial Coefficients, J. Integer Sequences, 18 (2015), #15.9.6.
- M. Ward, The representations of Stirling's numbers and Stirling's polynomials as sums of factorials, Amer. J. Math., 56 (1934), p. 87-95.
-
gf := (u,t)->exp(u*(exp(t)-1-t)); S2a := j->simplify(subs(u=0,t=0,diff(gf(u,t),u$j,t$(2*j+3)))/j!); for i from 1 to 20 do S2a(i); od; # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000
-
a[n_] := n (n+1) (10n^2+15n+2) (2n+3)!! / 810; Array[a, 20] (* Jean-François Alcover, Feb 09 2016, after Mark van Hoeij *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000
A171738
Number of n-digit terms in A115853.
Original entry on oeis.org
0, 9, 9, 252, 819, 11754, 72585, 803448, 6978159, 73047510, 744922341, 8023947732, 88219609227, 993117723282, 11397388906305, 132852212160624, 1568346473860839, 18699577205645646, 224600363892164061, 2711096523623447820, 32815659723020049411, 397495008150096639114
Offset: 1
- Matthew House, Table of n, a(n) for n = 1..996
- Index entries for linear recurrences with constant coefficients, signature (220, -23595, 1644214, -83716633, 3320655624, -106839372783, 2866614688938, -65446367283297, 1290934186719996, -22263630922575471, 338916526924263606, -4589394288200909781, 55636105851803049936, -607029027026607279171, 5987676299284026149946, -53597962913874542531511, 436793267723498418791916, -3249590798297591166114241, 22121531283842396531966386, -138066798468560248794910299, 791349936276906779789655496, -4171090447580882317650845341, 20240413531917813060282288558, -90503364704585154511917229755, 373146584463992545811390561028, -1419285864685331116742908160565, 4981481723295791035938228563970, -16135667263673226340044156972087, 48229932136237067328168799757664, -132993220541110610037595712319729, 338163168478885883461275641450094, -792363490141660083452341647812844, 1709441117632380221064502861863864, -3391977966130763237758648740886704, 6182428869770409717691044568257504, -10334792538707263177934951305545664, 15815751917789533624508526223437184, -22110429327513201841008428041853184, 28167208461596745245212310681342464, -32604111806052111009853487965004800, 34175732364859420044995467888502784, -32312338074096507084007090667556864, 27429278013461965544387449830678528, -20791237185298123019559840061734912, 13980827805208637058110391660085248, -8274715534505360843464786947735552, 4269275618057660740303251391905792, -1897199932751339113592691061948416, 715083586820263550683946460119040, -224022790650071250708428803276800, 56733883860143782469881036800000, -11154067599888012976481894400000, 1596567281510638039125196800000, -147945254464527104212992000000, 6658606584104736522240000000).
Cf.
A115853 (numbers where every present decimal digit occurs more than once).
-
Table[9 Sum[k! Binomial[9, k] (-1)^i Binomial[n, i] StirlingS2[n - i, k - i + 1], {k, 0, 9}, {i, 0, Min[n, k + 1]}], {n, 21}] (* Matthew House, Sep 06 2020 *)
Comments