cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A123095 Sum of first n 11th powers.

Original entry on oeis.org

0, 1, 2049, 179196, 4373500, 53201625, 415998681, 2393325424, 10983260016, 42364319625, 142364319625, 427675990236, 1170684360924, 2962844754961, 7012409924625, 15662165784000, 33254351828416, 67526248136049, 131794658215281, 248284917113500, 453084917113500
Offset: 0

Views

Author

Zerinvary Lajos, Sep 27 2006

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), this sequence (m=11), A123094 (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^11: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
    
  • Maple
    [seq(add(i^11, i=1..n), n=0..20)];
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^11 od: seq(a[n], n=0..13); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[Sum[k^11, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,20]^11] (* Harvey P. Dale, Sep 17 2021 *)
  • Python
    A123095_list, m = [0], [39916800, -199584000, 419126400, -479001600, 322494480, -129230640, 29607600, -3498000, 171006, -2046, 1, 0 , 0]
    for _ in range(10**2):
        for i in range(12):
            m[i+1]+= m[i]
        A123095_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [(bernoulli_polynomial(n+1, 12) - bernoulli(12))/12  for n in (0..30)] # G. C. Greubel, Jul 21 2021

Formula

a(n) = n*A023002(n) - Sum_{i=0..n-1} A023002(i). - Bruno Berselli, Apr 27 2010
a(n) = n^2*(n+1)^2*(2*n^8 +8*n^7 +4*n^6 -16*n^5 -5*n^4 +26*n^3 -3*n^2 -20*n +10)/24. - Bruno Berselli, Oct 03 2010
G.f.: x*(x^10 +2036*x^9 +152637*x^8 +2203488*x^7 +9738114*x^6 +15724248*x^5 +9738114*x^4 +2203488*x^3 +152637*x^2 +2036*x +1)/(1-x)^13. - Colin Barker, May 27 2012
a(n) = (-1)*Sum_{j=1..11} j*Stirling1(n+1,n+1-j)*Stirling2(n+11-j,n). - Mircea Merca, Jan 25 2014
a(n) = 1728*A006542(n+2)^2 + 216*A288876(n-2) + 96*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, May 25 2024

A220653 a(n) = n^11 + 11*n + 11^n.

Original entry on oeis.org

1, 23, 2191, 178511, 4208989, 48989231, 364568683, 1996813991, 8804293561, 33739007399, 125937424711, 570623341343, 3881436747541, 36314872538111, 383799398753059, 4185897925275191, 45967322049616753, 505481300395601591, 5559981581902310911, 61159206938673444719
Offset: 0

Views

Author

Jonathan Vos Post, Dec 17 2012

Keywords

Comments

This is to A220425 as 11 is to 2, to A220509 as 11 is to 3, to A220511 as 11 is to 5, and to A220528 as 11 is to 7.
The subsequence of primes begins: 23, 4185897925275191, see A220787 for the associated n.

Examples

			a(1) = 1^11 + 11*1 + 11^1 = 23.
		

Crossrefs

Programs

  • Mathematica
    Table[n^11 + 11*n + 11^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
  • Maxima
    A220653(n):=n^11+11*n+11^n$ makelist(A220653(n),n,0,20); /* Martin Ettl, Dec 17 2012 */

Formula

a(n) = A008455(n) + A008593(n) + A001020(n).
G.f.: (131*x^12 +21186*x^11 +1682460*x^10 +24070936*x^9 +104942001*x^8 +163196604*x^7 +91422264*x^6 +14484216*x^5 -518211*x^4 -131726*x^3 -1860*x^2 -1) / ((x -1)^12*(11*x -1)). - Colin Barker, May 09 2013

Extensions

a(19) from Stefano Spezia, May 03 2025

A366391 Numbers k such that A163511(k) is an eleventh power.

Original entry on oeis.org

0, 1024, 2049, 4099, 8199, 16399, 32799, 65599, 131199, 262399, 524799, 1049599, 2097152, 2099199, 4194305, 4196352, 4198399, 8388611, 8392705, 8394752, 8396799, 16777223, 16785411, 16789505, 16791552, 16793599, 33554447, 33570823, 33579011, 33583105, 33585152, 33587199, 67108895, 67141647, 67158023, 67166211, 67170305
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2023

Keywords

Comments

Equivalently, numbers k for which A332214(k), and also A332817(k) are eleventh powers.
The sequence is defined inductively as:
(a) it contains 0 and 1024,
and
(b) for any nonzero term a(n), (2*a(n)) + 1 and 2048*a(n) are also included as terms.
When iterating n -> 2n+1 mod 2047, starting from 1024 we get 1024, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, and then cycle starts again from 1024 (see A153893), while on the other hand, x^11 mod 2047 obtains values: 0, 1, 230, 322, 344, 368, 390, 482, 622, 712, 713, 942, 967, 1013, 1034, 1080, 1105, 1334, 1335, 1425, 1565, 1657, 1679, 1703, 1725, 1817, 2046. These sets have no terms in common, therefore there are no eleventh powers in this sequence after the initial 0.

Crossrefs

Positions of multiples of 11 in A365805.
Sequence A243071(n^11), n >= 1, sorted into ascending order.

Programs

  • PARI
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    isA366391v(n) = ispower(A163511(n),11);
    
  • PARI
    isA366391(n) = if(n<=1024, !(n%1024), if(n%2, isA366391((n-1)/2), if(n%2048, 0, isA366391(n>>11))));

A016799 a(n) = (3*n + 2)^11.

Original entry on oeis.org

2048, 48828125, 8589934592, 285311670611, 4049565169664, 34271896307633, 204800000000000, 952809757913927, 3670344486987776, 12200509765705829, 36028797018963968, 96549157373046875, 238572050223552512, 550329031716248441, 1196683881290399744, 2472159215084012303
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016789(n)^11.
Sum_{n>=0} 1/a(n) = 88573*zeta(11)/177147 - 7388*Pi^11/(2511058725*sqrt(3)). (End)

A024009 a(n) = 1 - n^11.

Original entry on oeis.org

1, 0, -2047, -177146, -4194303, -48828124, -362797055, -1977326742, -8589934591, -31381059608, -99999999999, -285311670610, -743008370687, -1792160394036, -4049565169663, -8649755859374, -17592186044415
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008455 (n^11).

Programs

A004917 Numbers that are the sum of at most 11 positive 11th powers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2048, 2049, 2050, 2051, 2052, 2053, 2054, 2055, 2056, 2057, 2058, 4096, 4097, 4098, 4099, 4100, 4101, 4102, 4103, 4104, 4105, 6144, 6145, 6146, 6147, 6148, 6149, 6150, 6151, 6152, 8192, 8193, 8194, 8195, 8196, 8197, 8198
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A008455 (11th powers).
Column k=11 of A336820.

Programs

  • Maple
    b:= proc(n, i, t) option remember; n=0 or i>0 and t>0
          and (b(n, i-1, t) or i^11<=n and b(n-i^11, i, t-1))
        end:
    a:= proc(n) option remember; local k;
          for k from 1+ `if`(n=1, -1, a(n-1))
          while not b(k, iroot(k, 11), 11) do od; k
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Sep 16 2016
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = n == 0 || i > 0 && t > 0 && (b[n, i - 1, t] || i^11 <= n && b[n - i^11, i, t - 1]);
    a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, -1, a[n - 1]], !b[k, k^(1/11) // Floor, 11], k++]; k];
    Array[a, 60] (* Jean-François Alcover, Dec 03 2020, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Sep 16 2016

A016943 a(n) = (6*n + 2)^11.

Original entry on oeis.org

2048, 8589934592, 4049565169664, 204800000000000, 3670344486987776, 36028797018963968, 238572050223552512, 1196683881290399744, 4882812500000000000, 16985107389382393856, 52036560683837093888, 143746751770690322432, 364375289404334925824, 858993459200000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A016787(n)*2^11. - Zerinvary Lajos, Jun 22 2009
From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016933(n)^9 = A016935(n)^3.
Sum_{n>=0} 1/a(n) = 1847*Pi^11/(1285662067200*sqrt(3)) + 88573*zeta(11)/362797056. (End)

A016955 a(n) = (6*n + 3)^11.

Original entry on oeis.org

177147, 31381059609, 8649755859375, 350277500542221, 5559060566555523, 50542106513726817, 317475837322472439, 1532278301220703125, 6071163615208263051, 20635899893042801193, 62050608388552823487, 168787390185178426269, 422351360321044921875, 984770902183611232881
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+3)^11: n in [0..20]]; // Vincenzo Librandi, May 06 2011
  • Mathematica
    a[n_] := (6*n + 3)^11; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^11.
a(n) = 3^11*A016763(n).
Sum_{n>=0} 1/a(n) = 2047*zeta(11)/362797056.
Sum_{n>=0} (-1)^n/a(n) = 50521*Pi^11/2633035913625600. (End)

A016967 a(n) = (6*n + 4)^11.

Original entry on oeis.org

4194304, 100000000000, 17592186044416, 584318301411328, 8293509467471872, 70188843638032384, 419430400000000000, 1951354384207722496, 7516865509350965248, 24986644000165537792, 73786976294838206464, 197732674300000000000, 488595558857835544576, 1127073856954876807168
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016957(n)^11.
a(n) = 2^11*A016799(n).
Sum_{n>=0} 1/a(n) = 88573*zeta(11)/362797056 - 1847*Pi^11/(1285662067200*sqrt(3)). (End)

A016979 a(n) = (6*n + 5)^11.

Original entry on oeis.org

48828125, 285311670611, 34271896307633, 952809757913927, 12200509765705829, 96549157373046875, 550329031716248441, 2472159215084012303, 9269035929372191597, 30155888444737842659, 87507831740087890625, 231122292121701565271, 564154396389137449973
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A008455 (n^11).

Programs

  • Magma
    [(6*n+5)^11 : n in [0..20]]; // Vincenzo Librandi, May 17 2011
  • Mathematica
    (6Range[0,20]+5)^11 (* or *) LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{48828125,285311670611,34271896307633,952809757913927,12200509765705829,96549157373046875,550329031716248441,2472159215084012303,9269035929372191597,30155888444737842659,87507831740087890625,231122292121701565271},20] (* Harvey P. Dale, Dec 17 2024 *)

Formula

a(n) = (6*n + 5)^11.
From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^11.
Sum_{n>=0} 1/a(n) = 181308931*zeta(11)/362797056 - 1261501*Pi^11/(428554022400*sqrt(3)). (End)
Previous Showing 21-30 of 43 results. Next