A319073
Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1
The corner of the square array begins:
A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027: 1, 2, 3, 4, 5, 6, 7, 8, ...
A008585: 3, 6, 9, 12, 15, 18, 21, 24, ...
A008586: 4, 8, 12, 16, 20, 24, 28, 32, ...
A008589: 7, 14, 21, 28, 35, 42, 49, 56, ...
A008588: 6, 12, 18, 24, 30, 36, 42, 48, ...
A008594: 12, 24, 36, 48, 60, 72, 84, 96, ...
A008590: 8, 16, 24, 32, 40, 48, 56, 64, ...
A008597: 15, 30, 45, 60, 75, 90, 105, 120, ...
A008595: 13, 26, 39, 52, 65, 78, 91, 104, ...
A008600: 18, 36, 54, 72, 90, 108, 126, 144, ...
...
Row n lists the multiples of
A000203(n).
Initial zeros should be omitted in the following sequences related to the rows of the array:
(Note that in the OEIS there are many other sequences that are also rows of this square array.)
-
T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
-
with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
-
Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)
A337940
Triangle read by rows: T(n, k) = T(n+2) - T(n-k), with the triangular numbers T = A000217, for n >= 1, k = 1, 2, ..., n.
Original entry on oeis.org
6, 9, 10, 12, 14, 15, 15, 18, 20, 21, 18, 22, 25, 27, 28, 21, 26, 30, 33, 35, 36, 24, 30, 35, 39, 42, 44, 45, 27, 34, 40, 45, 49, 52, 54, 55, 30, 38, 45, 51, 56, 60, 63, 65, 66, 33, 42, 50, 57, 63, 68, 72, 75, 77, 78, 36, 46, 55, 63, 70, 76, 81, 85, 88, 90, 91
Offset: 1
The triangle T(n, k) begins:
n \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1: 6
2: 9 10
3: 12 14 15
4: 15 18 20 21
5: 18 22 25 27 28
6: 21 26 30 33 35 36
7: 24 30 35 39 42 44 45
8: 27 34 40 45 49 52 54 55
9: 30 38 45 51 56 60 63 65 66
10: 33 42 50 57 63 68 72 75 77 78
11: 36 46 55 63 70 76 81 85 88 90 91
12: 39 50 60 69 77 84 90 95 99 102 104 105
13: 42 54 65 75 84 92 99 105 110 114 117 119 120
14: 45 58 70 81 91 100 108 115 121 126 130 133 135 136
15: 48 62 75 87 98 108 117 125 132 138 143 147 150 152 153
...
N = 15 appears precisely twice from the sums 4+5+6 = A(4, 1) = T(4, 1), and (1+2+3)+4+5 = A(1, 3) = T(3, 3), i.e., with a sum of 3 and 5 consecutive positive integers.
N = 42 appears three times from the sums 13+14+15 = A(13, 1) = T(13, 1), 9+10+11 +12 = A(9, 2) = T(10, 2), 3+4+5+6+7+8+9 = A(3, 5) = T(7, 5); i.e., 42 can be written as a sum of 3, 4 and 7 consecutive positive integers.
For columns k = 1, 2, ..., 10 see
A008585,
A016825,
A008587,
A016945,
A008589,
A017113,
A008591,
A017329,
A008593,
A017593.
For diagonals d = 1, 2, ..., 10 see
A000217,
A000096,
A055998,
A055999,
A056000,
A056115,
A056119 ,
A056121,
A056126,
A051942.
-
Flatten[Table[((n+2)*(n+3)-(n-k)*(n-k+1))/2,{n,11},{k,n}]] (* Stefano Spezia, Nov 24 2020 *)
A363922
a(n) = smallest number m > 0 such that n followed by m 7's yields a prime, or -1 if no such m exists.
Original entry on oeis.org
1, 2, 1, 1, 2, 1, -1, 2, 1, 1, 3, 1, 1, -1, 1, 1, 2, 2, 1, 6, -1, 1, 2, 2, 1, 2, 1, -1, 48, 1, 1, 5, 1, 1, -1, 1, 10, 2, 1, 12, 2, -1, 3, 3, 1, 1, 3, 1, -1, 2, 8, 7, 3, 1, 1, -1, 1, 1, 9, 1, 1, 2, -1, 1, 2, 5, 1, 3, 2, -1, 2, 1, 66, 2, 1, 3, -1, 1, 1, 3
Offset: 1
a(11)=3 because 117 and 1177 are composite but 11777 is prime.
-
a(n) = if ((n%7), my(m=1); while (!isprime(eval(concat(Str(n), Str(7*(10^m-1)/9)))), m++); m, -1); \\ Michel Marcus, Jul 17 2023
A084891
Multiples of 2, 3, 5, or 7, but not 7-smooth.
Original entry on oeis.org
22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 145, 146
Offset: 1
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Diagram showing numbers k in this sequence instead as k mod 210, in black, else white if k is coprime to 210, purple if k = 1, red if k | 210, and gold if rad(k) | 210, magnification 5X.
- Eric Weisstein's World of Mathematics, Smooth Number.
-
okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7;
Select[Range[1000], okQ] (* Jean-François Alcover, Oct 15 2021 *)
-
mult2357(m,n) = \\ mult 2,3,5,7 not 7 smooth
{
local(x,a,j,f,ln);
for(x=m,n,
f=0;
if(gcd(x,210)>1,
a = ifactor(x);
for(j=1,length(a),
if(a[j]>7,f=1;break);
);
if(f,print1(x","));
);
);
}
ifactor(n) = \\ The vector of the prime factors of n with multiplicity.
{
local(f,j,k,flist);
flist=[];
f=Vec(factor(n));
for(j=1,length(f[1]),
for(k = 1,f[2][j],flist = concat(flist,f[1][j])
);
);
return(flist)
}
\\ Cino Hilliard, Jul 03 2009
-
from sympy import primefactors
def ok(n):
pf = set(primefactors(n))
return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7}
print(list(filter(ok, range(147)))) # Michael S. Branicky, Oct 15 2021
A177897
Triangle of octanomial coefficients read by rows: n-th row is obtained by expanding ((1+x)*(1+x^2)*(1+x^4))^n mod 2 and converting to decimal.
Original entry on oeis.org
1, 255, 21845, 3342387, 286331153, 64424509455, 5519032976645, 844437815230467, 72340172838076673, 18446744073709551615, 1567973246265311887445, 241781474574111093044019, 20552052528097949033496593, 4660480146812799619066433295, 396140812663555408357742346245, 61084913312720243968763869790979
Offset: 0
-
a = Plus@@(x^Range[0, 7]); Table[FromDigits[Mod[CoefficientList[a^n, x], 2], 2], {n, 0, 15}]
-
a(n) = subst(lift(Mod(1+'x, 2)^(7*n)), 'x, 2); \\ Michel Marcus, Oct 14 2024
-
def A177897(n): return sum((bool(~(m:=7*n)&m-k)^1)<Chai Wah Wu, May 03 2023
A302537
a(n) = (n^2 + 13*n + 2)/2.
Original entry on oeis.org
1, 8, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205, 1255, 1306, 1358, 1411, 1465, 1520, 1576
Offset: 0
Illustration of initial terms (by the formula a(n) = A052905(n) + 3*n):
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o . . . . . o
. o o o o o o o . . . . o o . . . . . o
. o o o o o . . . o o . . . . o o . . . . . o
. o o o . . o o . . . o o . . . . o o . . . . . o
. o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
----------------------------------------------------------------------
. 1 8 16 25 35 46 58
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
Sequences whose n-th terms are of the form binomial(n, 2) + n*k + 1:
-
A302537:= func< n | ((n+1)^2 +12*n +1)/2 >;
[A302537(n): n in [0..50]]; // G. C. Greubel, Jan 21 2025
-
a := n -> (n^2 + 13*n + 2)/2;
seq(a(n), n = 0 .. 100);
-
Table[(n^2 + 13 n + 2)/2, {n, 0, 100}]
CoefficientList[ Series[(5x^2 - 5x - 1)/(x - 1)^3, {x, 0, 50}], x] (* or *)
LinearRecurrence[{3, -3, 1}, {1, 8, 16}, 51] (* Robert G. Wilson v, May 19 2018 *)
-
makelist((n^2 + 13*n + 2)/2, n, 0, 100);
-
a(n) = (n^2 + 13*n + 2)/2; \\ Altug Alkan, Apr 12 2018
-
def A302537(n): return (n**2 + 13*n + 2)//2
print([A302537(n) for n in range(51)]) # G. C. Greubel, Jan 21 2025
A309131
Triangle read by rows: T(n, k) = (n - k)*prime(1 + k), with 0 <= k < n.
Original entry on oeis.org
2, 4, 3, 6, 6, 5, 8, 9, 10, 7, 10, 12, 15, 14, 11, 12, 15, 20, 21, 22, 13, 14, 18, 25, 28, 33, 26, 17, 16, 21, 30, 35, 44, 39, 34, 19, 18, 24, 35, 42, 55, 52, 51, 38, 23, 20, 27, 40, 49, 66, 65, 68, 57, 46, 29, 22, 30, 45, 56, 77, 78, 85, 76, 69, 58, 31
Offset: 1
The triangle T(n, k) begins:
---+-----------------------------------------------------
n\k| 0 1 2 3 4 5 6 7 8
---+-----------------------------------------------------
1 | 2
2 | 4 3
3 | 6 6 5
4 | 8 9 10 7
5 | 10 12 15 14 11
6 | 12 15 20 21 22 13
7 | 14 18 25 28 33 26 17
8 | 16 21 30 35 44 39 34 19
9 | 18 24 35 42 55 52 51 38 23
...
For n = 3 the matrix M(3) is
2, 3, 5
M_{2,1}, 2, 3
M_{3,1}, M_{3,2}, 2
and therefore T(3, 0) = 2 + 2 + 2 = 6, T(3, 1) = 3 + 3 = 6, and T(3, 2) = 5.
-
[[(n-k)*NthPrime(1+k): k in [0..n-1]]: n in [1..11]]; // triangle output
-
a:=(n, k)->(n-k)*ithprime(1+k): seq(seq(a(n, k), k=0..n-1), n=1..11);
-
Flatten[Table[(n-k)*Prime[1+k],{n,1,11},{k,0,n-1}]]
-
T(n, k) = (n - k)*prime(1 + k);
tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ triangle output
-
[[(n-k)*Primes().unrank(k) for k in (0..n-1)] for n in (1..11)] # triangle output
A366596
Repdigit numbers that are divisible by 7.
Original entry on oeis.org
0, 7, 77, 777, 7777, 77777, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 7777777, 77777777, 777777777, 7777777777, 77777777777, 111111111111, 222222222222, 333333333333, 444444444444, 555555555555, 666666666666, 777777777777
Offset: 1
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..2329
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,1000001,0,0,0,0,0,0,0,0,0,0,0,0,0,-1000000).
-
r(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785
lista(nn) = select(x->!(x%7), vector(nn, k, r(k-1))); \\ Michel Marcus, Oct 26 2023
-
def A366596(n):
digitlen, digit = (n+12)//14*6, (n+12)%14-4
if digit < 1: digitlen += digit - 1; digit = 7
return 10**digitlen // 9 * digit # Karl-Heinz Hofmann, Dec 04 2023
A016982
a(n) = (7*n)^2.
Original entry on oeis.org
0, 49, 196, 441, 784, 1225, 1764, 2401, 3136, 3969, 4900, 5929, 7056, 8281, 9604, 11025, 12544, 14161, 15876, 17689, 19600, 21609, 23716, 25921, 28224, 30625, 33124, 35721, 38416, 41209, 44100, 47089, 50176, 53361, 56644, 60025, 63504, 67081, 70756, 74529, 78400
Offset: 0
A061825
Multiples of 7 containing only odd digits.
Original entry on oeis.org
7, 35, 77, 91, 119, 133, 175, 315, 357, 371, 399, 511, 539, 553, 595, 735, 777, 791, 917, 931, 959, 973, 1113, 1155, 1197, 1337, 1351, 1379, 1393, 1519, 1533, 1575, 1715, 1757, 1771, 1799, 1911, 1939, 1953, 1995, 3115, 3157, 3171, 3199, 3311, 3339
Offset: 1
315 = 7*45 is a term as it contains only odd digits.
-
R:= NULL:
for d from 1 to 4 do
for n from 5^d to 2*5^d-1 do
L:= map(t -> 2*t+1,convert(n,base,5)[1..d]);
x:= add(L[i]*10^(i-1),i=1..nops(L));
if x mod 7 = 0 then
R:= R, x;
fi;
od od:
R; # Robert Israel, Nov 02 2019
-
Select[7*Range[500], Count[IntegerDigits[#], ?EvenQ]==0&] (* _Harvey P. Dale, Jun 13 2011 *)
-
is(n)=n%7==0 && #setintersect(Set(digits(n)), [0,2,4,6,8])==0 \\ Charles R Greathouse IV, Feb 15 2017
More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001
Comments