cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 81 results. Next

A319073 Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1

Views

Author

Omar E. Pol, Sep 22 2018

Keywords

Examples

			The corner of the square array begins:
         A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027:       1,      2,      3,      4,      5,      6,      7,      8, ...
A008585:       3,      6,      9,     12,     15,     18,     21,     24, ...
A008586:       4,      8,     12,     16,     20,     24,     28,     32, ...
A008589:       7,     14,     21,     28,     35,     42,     49,     56, ...
A008588:       6,     12,     18,     24,     30,     36,     42,     48, ...
A008594:      12,     24,     36,     48,     60,     72,     84,     96, ...
A008590:       8,     16,     24,     32,     40,     48,     56,     64, ...
A008597:      15,     30,     45,     60,     75,     90,    105,    120, ...
A008595:      13,     26,     39,     52,     65,     78,     91,    104, ...
A008600:      18,     36,     54,     72,     90,    108,    126,    144, ...
...
		

Crossrefs

Another version of A274824.
Antidiagonal sums give A175254.
Main diagonal gives A064987.
Row n lists the multiples of A000203(n).
Row 1 is A000027.
Initial zeros should be omitted in the following sequences related to the rows of the array:
Rows 6 and 11: A008594.
Rows 7-9: A008590, A008597, A008595.
Rows 10 and 17: A008600.
Rows 12-13: A135628, A008596.
Rows 14, 15 and 23: A008606.
Rows 16 and 25: A135631.
(Note that in the OEIS there are many other sequences that are also rows of this square array.)

Programs

  • GAP
    T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
  • Maple
    with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)

A337940 Triangle read by rows: T(n, k) = T(n+2) - T(n-k), with the triangular numbers T = A000217, for n >= 1, k = 1, 2, ..., n.

Original entry on oeis.org

6, 9, 10, 12, 14, 15, 15, 18, 20, 21, 18, 22, 25, 27, 28, 21, 26, 30, 33, 35, 36, 24, 30, 35, 39, 42, 44, 45, 27, 34, 40, 45, 49, 52, 54, 55, 30, 38, 45, 51, 56, 60, 63, 65, 66, 33, 42, 50, 57, 63, 68, 72, 75, 77, 78, 36, 46, 55, 63, 70, 76, 81, 85, 88, 90, 91
Offset: 1

Views

Author

Wolfdieter Lang, Nov 23 2020

Keywords

Comments

This number triangle results from the array A(n, m) = T(n+m+1) - T(n-1), with T = A000217, for n, m >= 1. For this array see the example by Bob Selcoe, in A111774 (but with rows continued). The present triangle is obtained by reading the array by upwards antidiagonals: T(n, k) = A(n+1-k, k). See also the Jul 09 2019 comment by Ralf Steiner with the formula c_k(n) (rows k >= 1, columns n >= 3), rewritten for A(n, m) = (m+2)*(2*n+m+1)/2, leading to T(n, k) = (k+2)*(2*n-k+3)/2.
Therefore this triangle is related to the problem of giving the numbers which are sums of at least three consecutive positive integers given as sequence A111774. It allows us to find the multiplicities for the numbers of A111774. They are given in A338428(n).
To obtain the multiplicity for number N (>= 6) from A111774 one has to consider only the triangle rows n = 1, 2, ..., floor((N-3)/3).
The row reversed triangle, considered by Bob Selcoe in A111774, is T(n, n-k+1) = T(n+2) - T(k-1), for n >= 1, and k=1, 2, ..., n.
This triangle contains no odd prime numbers and no exact powers 2^m, for m >= 0. This can be seen by considering the diagonal sequences D(d, k), for d >= 1, k >= 1 or the row sequences of the array A(n, m), for n >= 1 and m >= 1. The result is A(r+1, s-2) = s*(s + 2*r + 1)/2, for r >= 0 and s >= 3 (from the g.f. of the diagonals of T given below). This is also given in the Jul 09 2019 comment by Ralf Steiner in A111774. Therefore A(r+1, s-2) is a product of two numbers >= 2, hence not a prime. And in both cases (i) s/2 integer or (ii) (s + 2*r + 1)/2 integer not both numbers can be powers of 2 by simple parity arguments.
The previous comment means that each T(n, k) has at least one odd prime as a proper divisor.
A number N appears in this triangle, or in A111774, if and only if floor(N/2) - delta(N) >= 1, where delta(N) = A055034(N). For the sequence b(n) := floor(n/2) - delta(n), for n >= 2, see A219839(n), b(1) = -1. See a W. Lang comment in A111774 for the proof.

Examples

			The triangle T(n, k) begins:
n \ k  1  2  3  4  5   6   7   8   9  10  11  12  13  14  15 ...
1:     6
2:     9 10
3:    12 14 15
4:    15 18 20 21
5:    18 22 25 27 28
6:    21 26 30 33 35  36
7:    24 30 35 39 42  44  45
8:    27 34 40 45 49  52  54  55
9:    30 38 45 51 56  60  63  65  66
10:   33 42 50 57 63  68  72  75  77  78
11:   36 46 55 63 70  76  81  85  88  90  91
12:   39 50 60 69 77  84  90  95  99 102 104 105
13:   42 54 65 75 84  92  99 105 110 114 117 119 120
14:   45 58 70 81 91 100 108 115 121 126 130 133 135 136
15:   48 62 75 87 98 108 117 125 132 138 143 147 150 152 153
...
N = 15 appears precisely twice from the sums 4+5+6 = A(4, 1) = T(4, 1), and (1+2+3)+4+5 = A(1, 3) = T(3, 3), i.e., with a sum of 3 and 5 consecutive positive integers.
N = 42 appears three times from the sums 13+14+15 = A(13, 1) = T(13, 1), 9+10+11 +12 = A(9, 2) = T(10, 2), 3+4+5+6+7+8+9 = A(3, 5) = T(7, 5); i.e., 42 can be written as a sum of 3, 4 and 7 consecutive positive integers.
		

Crossrefs

Cf. A055034, A111774, A338428 (multiplicities), A219839.
For columns k = 1, 2, ..., 10 see A008585, A016825, A008587, A016945, A008589, A017113, A008591, A017329, A008593, A017593.
For diagonals d = 1, 2, ..., 10 see A000217, A000096, A055998, A055999, A056000, A056115, A056119 , A056121, A056126, A051942.

Programs

  • Mathematica
    Flatten[Table[((n+2)*(n+3)-(n-k)*(n-k+1))/2,{n,11},{k,n}]] (* Stefano Spezia, Nov 24 2020 *)

Formula

T(n, k) = ((n+2)*(n+3) - (n-k)*(n-k+1))/2, for n >= 1 and k = 1, 2, ..., n (see the name).
T(n, k) = (k+2)*(2*n-k+3)/2 (factorized).
G.f. columns k = 2*j+1, for j >= 0: Go(j, x) = x^(2*j+1)*(2*j+3)*(j+2 - (j+1)*x)/(1-x)^2,
G.f. columns k = 2*j, for j >= 1: Ge(j, x) = x^(2*j)*(j+1)*(2*j+3 - (2*j+1)*x)/(1-x)^2.
G.f. row polynomials: G(z,x) = z*x*(1 + z*x)^3*{3*(2-z) - (8-3*z)*(z*x) + (3-z)*(z*x)^2}/((1 - z)^2*(1 - (z*x)^2)^3).
G.f. diagonals d >= 1: GD(d, x) = ((d+1)*3 - (5*d+3)*x + (2*d+1)*x^2)/(1-x)^3.
G.f. of GD(d, x): GGD(z,x) = (6-8*x+3*x^2 - (3-3*x+x^2)*z)/((1-x)^3*(1-z)^2).

A363922 a(n) = smallest number m > 0 such that n followed by m 7's yields a prime, or -1 if no such m exists.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, -1, 2, 1, 1, 3, 1, 1, -1, 1, 1, 2, 2, 1, 6, -1, 1, 2, 2, 1, 2, 1, -1, 48, 1, 1, 5, 1, 1, -1, 1, 10, 2, 1, 12, 2, -1, 3, 3, 1, 1, 3, 1, -1, 2, 8, 7, 3, 1, 1, -1, 1, 1, 9, 1, 1, 2, -1, 1, 2, 5, 1, 3, 2, -1, 2, 1, 66, 2, 1, 3, -1, 1, 1, 3
Offset: 1

Views

Author

Toshitaka Suzuki, Jul 12 2023

Keywords

Comments

a(n) = -1 when n = 7*k because no matter how many 7's are appended to n, the resulting number is always divisible by 7 and therefore cannot be prime.
a(n) = -1 when n = 15873*k + 891, 1261, 2889, 3263, 3300, 7810, 8917, 9812, 12617, 13024, 14615 or 15066, because n followed by any positive number, m say, of 7's is divisible by at least one of the primes {3,11,13,37}.
Similarly,
a(n) = -1 when n = 11111111*k + 964146, 1207525, 2342974, 3567630, 7525789, 8134540, 8591231 or 9641467 by primes {11,73,101,137};
a(n) = -1 when n = 429000429*k + 23928593, 27079312, 36492115, 41207969, 52285750, 80569929, 89920882, 93857078, 133928703, 217208145, 223492302, 236849444, 239285937, 247857232, 259793116, 270793127, 323985244, 332698824, 333570182, 334985255, 346849554, 364921157, 376698868 or 412079697 by primes {3,11,13,101,9901};
a(n) = -1 when n = 1221001221*k + 14569863, 28792885, 145698637, 167698659, 225079510, 235985156, 247079532, 287928857, 331921124, 399492478, 415286113, 421492500, 437286135, 455985376, 489857474, 529929099, 551921344, 635208563, 709857694, 877208805, 896850104, 993570842, 1029793886 or 1138850346 by primes {3,11,37,101,9901};
a(n) = -1 when n = 1443001443*k + 85928655, 167698659, 176928746, 218921011, 233985154, 247079532, 310492389, 326286024, 376857361, 585793442, 655208583, 700699192, 746208674, 780080065, 791570640, 805850013, 843492922, 859286557, 882570731, 896850104, 1027793884, 1219922012, 1234986155 or 1377858362 by primes {3,13,37,101,9901}.
a(4444) > 300000 or a(4444) = -1.

Examples

			a(11)=3 because 117 and 1177 are composite but 11777 is prime.
		

Crossrefs

Programs

  • PARI
    a(n) = if ((n%7), my(m=1); while (!isprime(eval(concat(Str(n), Str(7*(10^m-1)/9)))), m++); m, -1); \\ Michel Marcus, Jul 17 2023

A084891 Multiples of 2, 3, 5, or 7, but not 7-smooth.

Original entry on oeis.org

22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 145, 146
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2003

Keywords

Comments

Intersection of A068191 with (A005843, A008585, A008587 and A008589); union of (A005843, A008585, A008587 and A008589) without A002473.
A020639(a(n)) <= 7, A006530(a(n)) > 7.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7;
    Select[Range[1000], okQ] (* Jean-François Alcover, Oct 15 2021 *)
  • PARI
    mult2357(m,n) = \\ mult 2,3,5,7 not 7 smooth
    {
    local(x,a,j,f,ln);
    for(x=m,n,
    f=0;
    if(gcd(x,210)>1,
    a = ifactor(x);
    for(j=1,length(a),
    if(a[j]>7,f=1;break);
    );
    if(f,print1(x","));
    );
    );
    }
    ifactor(n) = \\ The vector of the prime factors of n with multiplicity.
    {
    local(f,j,k,flist);
    flist=[];
    f=Vec(factor(n));
    for(j=1,length(f[1]),
    for(k = 1,f[2][j],flist = concat(flist,f[1][j])
    );
    );
    return(flist)
    }
    \\ Cino Hilliard, Jul 03 2009
    
  • Python
    from sympy import primefactors
    def ok(n):
        pf = set(primefactors(n))
        return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7}
    print(list(filter(ok, range(147)))) # Michael S. Branicky, Oct 15 2021

A177897 Triangle of octanomial coefficients read by rows: n-th row is obtained by expanding ((1+x)*(1+x^2)*(1+x^4))^n mod 2 and converting to decimal.

Original entry on oeis.org

1, 255, 21845, 3342387, 286331153, 64424509455, 5519032976645, 844437815230467, 72340172838076673, 18446744073709551615, 1567973246265311887445, 241781474574111093044019, 20552052528097949033496593, 4660480146812799619066433295, 396140812663555408357742346245, 61084913312720243968763869790979
Offset: 0

Views

Author

Vladimir Shevelev, Dec 15 2010

Keywords

Comments

A generalization: Denote {a_k(n)}_(n>=0) the sequence of triangle of 2^k-nomial coefficients [read by rows: n-th row is obtained by expanding ((1+x)*(1+x^2)*...*(1+x^(2^(k-1)))^n ] mod 2 converted to decimal. Then a_k(n)=A001317((2^k-1)*n). [Proof is based on the fact (following from the Lucas theorem for the binomial coefficients) that the k-th row of Pascal triangle contains odd coefficients only iff k is Mersenne number (k=2^m-1)].

Crossrefs

Programs

  • Mathematica
    a = Plus@@(x^Range[0, 7]); Table[FromDigits[Mod[CoefficientList[a^n, x], 2], 2], {n, 0, 15}]
  • PARI
    a(n) = subst(lift(Mod(1+'x, 2)^(7*n)), 'x, 2); \\ Michel Marcus, Oct 14 2024
  • Python
    def A177897(n): return sum((bool(~(m:=7*n)&m-k)^1)<Chai Wah Wu, May 03 2023
    

Formula

a(n) = A001317(7*n).

Extensions

More terms from Michel Marcus, Oct 14 2024

A302537 a(n) = (n^2 + 13*n + 2)/2.

Original entry on oeis.org

1, 8, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205, 1255, 1306, 1358, 1411, 1465, 1520, 1576
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 7, 1, 0, 0, 0, ...].
Numbers m > 0 such that 8*m + 161 is a square.

Examples

			Illustration of initial terms (by the formula a(n) = A052905(n) + 3*n):
.                                                                    o
.                                                                  o o
.                                                    o           o o o
.                                                  o o         o o o o
.                                      o         o o o       o o o o o
.                                    o o       o o o o     o o o o o o
.                          o       o o o     o o o o o   o . . . . . o
.                        o o     o o o o   o . . . . o   o . . . . . o
.                o     o o o   o . . . o   o . . . . o   o . . . . . o
.              o o   o . . o   o . . . o   o . . . . o   o . . . . . o
.        o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.      o o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.  o   o o   o o o   o o o o   o o o o o   o o o o o o   o o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
----------------------------------------------------------------------
.  1     8      16        25          35            46              58
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Sequences whose n-th terms are of the form binomial(n, 2) + n*k + 1:
A152947 (k = 0); A000124 (k = 1); A000217 (k = 2); A034856 (k = 3);
A052905 (k = 4); A051936 (k = 5); A246172 (k = 6).

Programs

  • Magma
    A302537:= func< n | ((n+1)^2 +12*n +1)/2 >;
    [A302537(n): n in [0..50]]; // G. C. Greubel, Jan 21 2025
    
  • Maple
    a := n -> (n^2 + 13*n + 2)/2;
    seq(a(n), n = 0 .. 100);
  • Mathematica
    Table[(n^2 + 13 n + 2)/2, {n, 0, 100}]
    CoefficientList[ Series[(5x^2 - 5x - 1)/(x - 1)^3, {x, 0, 50}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 16}, 51] (* Robert G. Wilson v, May 19 2018 *)
  • Maxima
    makelist((n^2 + 13*n + 2)/2, n, 0, 100);
    
  • PARI
    a(n) = (n^2 + 13*n + 2)/2; \\ Altug Alkan, Apr 12 2018
    
  • Python
    def A302537(n): return (n**2 + 13*n + 2)//2
    print([A302537(n) for n in range(51)]) # G. C. Greubel, Jan 21 2025

Formula

a(n) = binomial(n + 1, 2) + 6*n + 1 = binomial(n, 2) + 7*n + 1.
a(n) = a(n-1) + n + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, where a(0) = 1, a(1) = 8 and a(2) = 16.
a(n) = 2*a(n-1) - a(n-2) + 1.
a(n) = A004120(n+1) for n > 1.
a(n) = A056119(n) + 1.
a(n) = A152947(n+1) + A008589(n).
a(n) = A060544(n+1) - A002939(n).
a(n) = A000578(n+1) - A162261(n) for n > 0.
G.f.: (1 + 5*x - 5*x^2)/(1 - x)^3.
E.g.f.: (1/2)*(2 + 14*x + x^2)*exp(x).
Sum_{n>=0} 1/a(n) = 24097/45220 + 2*Pi*tan(sqrt(161)*Pi/2) / sqrt(161) = 1.4630922534498496... - Vaclav Kotesovec, Apr 11 2018

A309131 Triangle read by rows: T(n, k) = (n - k)*prime(1 + k), with 0 <= k < n.

Original entry on oeis.org

2, 4, 3, 6, 6, 5, 8, 9, 10, 7, 10, 12, 15, 14, 11, 12, 15, 20, 21, 22, 13, 14, 18, 25, 28, 33, 26, 17, 16, 21, 30, 35, 44, 39, 34, 19, 18, 24, 35, 42, 55, 52, 51, 38, 23, 20, 27, 40, 49, 66, 65, 68, 57, 46, 29, 22, 30, 45, 56, 77, 78, 85, 76, 69, 58, 31
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2019

Keywords

Comments

T(n, k) is the k-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n).
The h-th subdiagonal of the triangle T gives the primes multiplied by (h + 1).
The k-th column of the triangle T gives the multiples of prime(1 + k).
Also array A(n, k) = n*prime(1 + k) read by ascending antidiagonals, with 0 <= k < n. - Michel Marcus, Jul 15 2019

Examples

			The triangle T(n, k) begins:
---+-----------------------------------------------------
n\k|    0     1     2     3     4     5     6     7     8
---+-----------------------------------------------------
1  |    2
2  |    4     3
3  |    6     6     5
4  |    8     9    10     7
5  |   10    12    15    14    11
6  |   12    15    20    21    22    13
7  |   14    18    25    28    33    26    17
8  |   16    21    30    35    44    39    34    19
9  |   18    24    35    42    55    52    51    38    23
...
For n = 3 the matrix M(3) is
          2,         3,         5
    M_{2,1},         2,         3
    M_{3,1},   M_{3,2},         2
and therefore T(3, 0) = 2 + 2 + 2 = 6, T(3, 1) = 3 + 3 = 6, and T(3, 2) = 5.
		

Crossrefs

Cf. A000040: diagonal; A001747: 1st subdiagonal; A001748: 2nd subdiagonal; A001749: 3rd subdiagonal; A001750: 4th subdiagonal; A005843: 0th column; A008585: 1st column; A008587: 2nd column; A008589: 3rd column; A008593: 4th column; A008595: 5th column; A008599: 6th column; A008601: 7th column; A014148: row sums; A138636: 5th subdiagonal; A272470: 6th subdiagonal.

Programs

  • Magma
    [[(n-k)*NthPrime(1+k): k in [0..n-1]]: n in [1..11]]; // triangle output
    
  • Maple
    a:=(n, k)->(n-k)*ithprime(1+k): seq(seq(a(n, k), k=0..n-1), n=1..11);
  • Mathematica
    Flatten[Table[(n-k)*Prime[1+k],{n,1,11},{k,0,n-1}]]
  • PARI
    T(n, k) = (n - k)*prime(1 + k);
    tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ triangle output
    
  • Sage
    [[(n-k)*Primes().unrank(k) for k in (0..n-1)] for n in (1..11)] # triangle output

Formula

T(n, k) = A025581(n, k)*A000040(1 + k).

A366596 Repdigit numbers that are divisible by 7.

Original entry on oeis.org

0, 7, 77, 777, 7777, 77777, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 7777777, 77777777, 777777777, 7777777777, 77777777777, 111111111111, 222222222222, 333333333333, 444444444444, 555555555555, 666666666666, 777777777777
Offset: 1

Views

Author

Kritsada Moomuang, Oct 14 2023

Keywords

Comments

7 divides a repdigit iff it consists of only digit 7, or has length 6*k (for any digit).
Repdigit remainders A010785(k) mod 7 have period 54. - Karl-Heinz Hofmann, Dec 04 2023

Crossrefs

Intersection of A008589 and A010785.
Cf. A002281 (a subsequence).
Cf. A305322 (divisor 3), A002279 (divisor 5), A083118 (the impossible divisors).

Programs

  • PARI
    r(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785
    lista(nn) = select(x->!(x%7), vector(nn, k, r(k-1))); \\ Michel Marcus, Oct 26 2023
    
  • Python
    def A366596(n):
        digitlen, digit = (n+12)//14*6, (n+12)%14-4
        if digit < 1: digitlen += digit - 1; digit = 7
        return 10**digitlen // 9 * digit # Karl-Heinz Hofmann, Dec 04 2023

Formula

From Karl-Heinz Hofmann, Dec 04 2023: (Start)
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14) + 41), for (n-2) mod 14 > 4.
a(n) = (10^(6*floor((n-2)/14) + 6)-1)/9*(((n-2) mod 14)-4), for (n-2) mod 14 > 4.
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14)*9 + 7), for (n-2) mod 14 <= 4.
a(n) = (10^(6*floor((n-2)/14) + 1 + ((n-2) mod 14))-1)/9*7, for (n-2) mod 14 <= 4.
(End)

A016982 a(n) = (7*n)^2.

Original entry on oeis.org

0, 49, 196, 441, 784, 1225, 1764, 2401, 3136, 3969, 4900, 5929, 7056, 8281, 9604, 11025, 12544, 14161, 15876, 17689, 19600, 21609, 23716, 25921, 28224, 30625, 33124, 35721, 38416, 41209, 44100, 47089, 50176, 53361, 56644, 60025, 63504, 67081, 70756, 74529, 78400
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/294.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/588.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/7)/(Pi/7).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/7)/(Pi/7). (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 49*x*(1 + x)/(1-x)^3.
E.g.f.: 49*x*(1 + x)*exp(x).
a(n) = 49*A000290(n) = A008589(n)^2 = A000290(A008589(n)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A061825 Multiples of 7 containing only odd digits.

Original entry on oeis.org

7, 35, 77, 91, 119, 133, 175, 315, 357, 371, 399, 511, 539, 553, 595, 735, 777, 791, 917, 931, 959, 973, 1113, 1155, 1197, 1337, 1351, 1379, 1393, 1519, 1533, 1575, 1715, 1757, 1771, 1799, 1911, 1939, 1953, 1995, 3115, 3157, 3171, 3199, 3311, 3339
Offset: 1

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Examples

			315 = 7*45 is a term as it contains only odd digits.
		

Crossrefs

Subsequence of A008589.
Cf. A061826.

Programs

  • Maple
    R:= NULL:
    for d from 1 to 4 do
      for n from 5^d to 2*5^d-1 do
        L:= map(t -> 2*t+1,convert(n,base,5)[1..d]);
        x:= add(L[i]*10^(i-1),i=1..nops(L));
        if x mod 7 = 0 then
          R:= R, x;
        fi;
    od od:
    R; # Robert Israel, Nov 02 2019
  • Mathematica
    Select[7*Range[500], Count[IntegerDigits[#], ?EvenQ]==0&] (* _Harvey P. Dale, Jun 13 2011 *)
  • PARI
    is(n)=n%7==0 && #setintersect(Set(digits(n)), [0,2,4,6,8])==0 \\ Charles R Greathouse IV, Feb 15 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001
Previous Showing 51-60 of 81 results. Next