cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 93 results. Next

A169823 Multiples of 60.

Original entry on oeis.org

0, 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, 720, 780, 840, 900, 960, 1020, 1080, 1140, 1200, 1260, 1320, 1380, 1440, 1500, 1560, 1620, 1680, 1740, 1800, 1860, 1920, 1980, 2040, 2100, 2160, 2220, 2280, 2340, 2400, 2460, 2520, 2580, 2640, 2700
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2010

Keywords

Comments

Numbers that are divisible by all of 1, 2, 3, 4, 5, 6.

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 60*x/(x-1)^2.
E.g.f.: 60*x*exp(x).
a(n) = 60*n = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*A249674(n) = 3*A008602(n) = 4*A008597(n) = 5*A008594(n) = 6*A008592(n) = 10*A008588(n) = 12*A008587(n) = 15*A008586(n) = 20*A008585(n) = 30*A005843(n) = 60*A001477(n) = A169827(n)/14 = A169825(n)/7. (End)

A059692 Table of carryless products i * j, i>=0, j>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 0, 2, 2, 0, 6, 0, 0, 7, 2, 5, 6, 5, 2, 7, 0, 0, 8, 4, 8, 0, 0, 8, 4, 8, 0, 0, 9, 6, 1, 4, 5, 4, 1, 6, 9, 0, 0, 10, 8, 4, 8, 0, 0, 8, 4, 8, 10, 0, 0, 11, 20, 7, 2, 5, 6, 5, 2, 7, 20, 11, 0
Offset: 0

Views

Author

Henry Bottomley, Feb 19 2001

Keywords

Examples

			Table begins:
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0 ...
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ...
  0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 20 ...
  0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 30, 33, 36, 39, 32, 35 ...
  0, 4, 8, 2, 6, 0, 4, 8, 2, 6, 40, 44, 48, 42, 46, 40 ...
  ...
T(12, 97) = 954 since we have 12 X 97 = carryless sum of 900, (180 mod 100=)80, 70 and (14 mod 10=)4 = 954.
		

Crossrefs

Cf. A001477 for carryless 1 X n, A004520 for carryless 2 X 10 base 10, A055120 for carryless 9 X n, A008592 for carryless 10 X n.
Cf. A048720 (binary), A325820 (ternary).

Programs

  • Mathematica
    len[num_]:=Length[IntegerDigits[num]]; digit[num_,d_]:=Part[IntegerDigits[num],d]; T[i_, j_] := FromDigits[Reverse[CoefficientList[PolynomialMod[Sum[digit[i,c]*x^(len[i]-c), {c, len[i]}]*Sum[digit[j,r]*x^(len[j]-r), {r, len[j]}], 10], x]]]; Flatten[Table[T[i - j, j], {i, 0, 12}, {j, 0, i}]] (* Stefano Spezia, Sep 26 2022 *)
  • PARI
    T(n,k) = fromdigits(lift(Vec( Mod(Pol(digits(n)),10) * Pol(digits(k))))); \\ Kevin Ryde, Sep 27 2022

Extensions

Minor edits by N. J. A. Sloane, Aug 24 2010

A107730 Numbers n such that prime(n+1) has the same last digit as prime(n).

Original entry on oeis.org

34, 42, 53, 61, 68, 80, 82, 101, 106, 115, 125, 127, 138, 141, 145, 154, 157, 172, 175, 177, 191, 193, 204, 222, 233, 258, 259, 266, 269, 279, 289, 306, 308, 310, 316, 324, 369, 383, 397, 399, 403, 418, 422, 431, 442, 443, 474, 480, 491, 497, 500, 502, 518
Offset: 1

Views

Author

Jonathan Vos Post, Jun 12 2007

Keywords

Examples

			a(1) = 34 because prime(34) = 139, prime(35) = 149, both end with the digit 9.
a(2) = 42 because prime(42) = 181, prime(43) = 191, both end with the digit 1.
a(4) = 61 because prime(61) = 283, prime(62) = 293, both end with the digit 3.
a(5) = 68 because prime(68) = 337, prime(69) = 347, both end with the digit 7.
		

Crossrefs

Union of rows r == 0 (mod 5) of A174349. Indices of multiples of 10 (A008592) in A001223.

Programs

  • GAP
    P:=List(Filtered([1..4000],IsPrime),n->Reversed(ListOfDigits(n)));;
    a:=Filtered([1..Length(P)-1],i->P[i+1][1]=P[i][1]); # Muniru A Asiru, Oct 31 2018
  • Maple
    isA107730 := proc(n) local ldign, ldign2 ; ldign := convert(ithprime(n),base,10) ; ldign2 := convert(ithprime(n+1),base,10) ; if op(1,ldign) = op(1,ldign2) then true ; else false ; fi ; end: for n from 1 to 600 do if isA107730(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jun 15 2007
  • Mathematica
    Select[Range[200],IntegerDigits[Prime[ # ]][[ -1]]==IntegerDigits[Prime[ #+1]][[ -1]]&] (* Stefan Steinerberger, Jun 14 2007 *)
    Flatten[Position[Partition[Prime[Range[600]],2,1],?(Mod[#[[1]],10] == Mod[#[[2]],10]&),{1},Heads->False]] (* _Harvey P. Dale, Aug 20 2015 *)
  • PARI
    isok(n) = (prime(n) % 10) == prime(n+1) % 10; \\ Michel Marcus, Feb 16 2017
    
  • PARI
    is_A107730(n)=!((nextprime(1+n=prime(n))-n)%10) \\ This (...) is twice as fast as prime(n+1)-prime(n), and prime(n) becomes very slow for n > 41538, even with primelimit = 10^7. - M. F. Hasler, Oct 24 2018
    

Formula

Numbers n such that A000040(n)==A000040(n+1) mod 10, or A000040(n+1) - A000040(n) = 10*k for some integer k, or n such that A129750(n) = 0. [Corrected and edited by M. F. Hasler, Oct 24 2018]
A107730 = A001223^(-1)(A008592) = { i > 0 | A001223(i) == 0 (mod 10)} = U_{k>0} {A174349(5k,j); j >= 1}. - M. F. Hasler, Oct 24 2018
Union of A320703, A320708, A320713, A320718, ... A116493,..., A116496 ... etc. - R. J. Mathar, Apr 30 2024

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Jun 14 2007

A291639 Numbers k such that 0 is the smallest decimal digit of k^3.

Original entry on oeis.org

10, 16, 20, 22, 30, 34, 37, 40, 42, 43, 47, 48, 50, 52, 59, 60, 63, 67, 69, 70, 73, 74, 79, 80, 84, 86, 87, 89, 90, 93, 94, 99, 100, 101, 102, 103, 106, 107, 109, 110, 112, 115, 116, 117, 118, 120, 123, 124, 126, 127, 128, 130, 131, 134, 135, 138, 140, 141
Offset: 1

Views

Author

Colin Barker, Aug 28 2017

Keywords

Comments

The sequence is infinite. For example, A062397(i) is in the sequence for any i > 1, since A168575(i) contains the digit 0 for any i > 1. - Felix Fröhlich, Aug 28 2017
Also contains A008592, and has asymptotic density 1. - Robert Israel, Aug 29 2017

Examples

			16 is in the sequence because 16^3 = 4096, the smallest decimal digit of which is 0.
		

Crossrefs

Programs

  • Maple
    select(n -> min(convert(n^3,base,10))=0, [$1..1000]); # Robert Israel, Aug 29 2017
  • Mathematica
    Select[Range[150],DigitCount[#^3,10,0]>0&] (* Harvey P. Dale, Feb 03 2025 *)
  • PARI
    select(k->vecmin(digits(k^3))==0, vector(500, k, k))

A376506 Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 1.

Original entry on oeis.org

1, 7, 43, 49, 51, 57, 93, 99, 101, 107, 143, 149, 151, 157, 193, 199, 201, 207, 243, 249, 251, 257, 293, 299, 301, 307, 343, 349, 351, 357, 393, 399, 401, 407, 443, 449, 451, 457, 493, 499, 501, 507, 543, 549, 551, 557, 593, 599, 601, 607, 643, 649, 651, 657
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (this sequence), 25 (cf. A017329), or 76 (cf. A376507), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 6, 36, 6, 2, ...

Examples

			7^2 = 49 -> 49^2 = 1 -> 1^2 = 1 -> ... (mod 100).
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

Formula

G.f.: x*(1 + 6*x + 36*x^2 + 6*x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3)). - Stefano Spezia, Sep 26 2024

A376507 Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 76.

Original entry on oeis.org

18, 24, 26, 32, 68, 74, 76, 82, 118, 124, 126, 132, 168, 174, 176, 182, 218, 224, 226, 232, 268, 274, 276, 282, 318, 324, 326, 332, 368, 374, 376, 382, 418, 424, 426, 432, 468, 474, 476, 482, 518, 524, 526, 532, 568, 574, 576, 582, 618, 624, 626, 632, 668, 674
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (this sequence), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 6, 2, 6, 36, ...

Examples

			18^2 = 24 -> 24^2 = 76 -> 76^2 = 76 -> ... (mod 100).
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

Formula

G.f.: 2*x*(9 + 3*x + x^2 + 3*x^3 + 9*x^4)/((1 - x)^2*(1 + x + x^2 + x^3)). - Stefano Spezia, Sep 26 2024

A376508 Natural numbers whose iterated squaring modulo 100 eventually enters the 4-cycle 16, 56, 36, 96.

Original entry on oeis.org

2, 4, 6, 8, 12, 14, 16, 22, 28, 34, 36, 38, 42, 44, 46, 48, 52, 54, 56, 58, 62, 64, 66, 72, 78, 84, 86, 88, 92, 94, 96, 98, 102, 104, 106, 108, 112, 114, 116, 122, 128, 134, 136, 138, 142, 144, 146, 148, 152, 154, 156, 158, 162, 164, 166, 172, 178, 184, 186
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (cf. A376507), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (this sequence) or 21, 41, 81, 61 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 2, 2, 2, 4, 2, 2, 6, 6, 6, 2, 2, 4, 2, 2, 2, 4, ...

Examples

			2^2 = 4 -> 4^2 = 16 -> 16^2 = 56 -> 56^2 = 36 -> 36^2 = 96, 96^2 = 16 -> ... (mod 100).
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

A376509 Natural numbers whose iterated squaring modulo 100 eventually enters the 4-cycle 21, 41, 81, 61.

Original entry on oeis.org

3, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 47, 53, 59, 61, 63, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 97, 103, 109, 111, 113, 117, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 147, 153, 159, 161, 163, 167, 169, 171, 173, 177, 179, 181
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (cf. A376507), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (this sequence).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 6, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 6, 6, ...

Examples

			3^2 = 9 -> 9^2 = 81 -> 81^2 = 61 -> 61^2 = 21 -> 21^2 = 41 -> 41^2 = 81 -> ... (mod 100)
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

A166730 Positive integers with English names ending in "y".

Original entry on oeis.org

20, 30, 40, 50, 60, 70, 80, 90, 120, 130, 140, 150, 160, 170, 180, 190, 220, 230, 240, 250, 260, 270, 280, 290, 320, 330, 340, 350, 360, 370, 380, 390, 420, 430, 440, 450, 460, 470, 480, 490, 520, 530, 540, 550, 560, 570, 580, 590, 620, 630, 640, 650, 660
Offset: 1

Views

Author

Rick L. Shepherd, Oct 20 2009

Keywords

Examples

			Twenty (20) is a term. Ten (10) is not a term (but is a term of A060228); one hundred (100) is not a term (but is a term of A166731); one million (1000000) is not a term (but is in A060228).
		

Crossrefs

Formula

A008592 MINUS {n | n = 0 mod 100 or n = 10 mod 100}.

A349278 a(n) is the product of the sum of the last i digits of n, with i going from 1 to the total number of digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 0, 4, 10, 18, 28, 40, 54, 70, 88, 108, 0, 5, 12, 21, 32, 45, 60, 77, 96, 117, 0, 6, 14, 24, 36, 50, 66, 84, 104, 126, 0, 7, 16, 27, 40, 55, 72, 91, 112, 135, 0
Offset: 1

Views

Author

Michel Marcus, Nov 13 2021

Keywords

Comments

This is similar to A349194 but with digits taken in reversed order.
The only primes in the sequence are 2, 3, 5 and 7. - Bernard Schott, Dec 04 2021
The positive terms form a subsequence of A349194. - Bernard Schott, Dec 19 2021

Examples

			For n=256, a(256) = 6*(6+5)*(6+5+2) = 858.
		

Crossrefs

Cf. A349194, A349279 (fixed points).

Programs

  • Mathematica
    a[n_] := Times @@ Accumulate @ Reverse @ IntegerDigits[n]; Array[a, 70] (* Amiram Eldar, Nov 13 2021 *)
  • PARI
    a(n) = my(d=Vecrev(digits(n))); prod(i=1, #d, sum(j=1, i, d[j]));
    
  • Python
    from math import prod
    from itertools import accumulate
    def a(n): return 0 if n%10==0 else prod(accumulate(map(int, str(n)[::-1])))
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Nov 13 2021

Formula

From Bernard Schott, Dec 04 2021: (Start)
a(n) = 0 iff n is a multiple of 10 (A008592).
a(n) = 1 iff n = 1.
a(n) = 2 (resp. 3, 4, 5, 7, 9) iff n = 10^k+1 (A000533) (resp. 2*10^k+1 (A199682), 3*10^k+1 (A199683), 4*10^k+1 (A199684), 6*10^k+1 (A199686), 8*10^k+1 (A199689)).
a(R_n) = n! where R_n = A002275(n) is repunit > 0, and n! = A000142(n).
a(n) = A349194(n) if n is palindrome (A002113). (End)
Previous Showing 21-30 of 93 results. Next