cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 79 results. Next

A283742 Numbers with digit sum 11 that are multiples of 11.

Original entry on oeis.org

209, 308, 407, 506, 605, 704, 803, 902, 2090, 3080, 4070, 5060, 6050, 7040, 8030, 9020, 10109, 10208, 10307, 10406, 10505, 10604, 10703, 10802, 10901, 20009, 20108, 20207, 20306, 20405, 20504, 20603, 20702, 20801, 20900, 30008, 30107, 30206, 30305, 30404
Offset: 1

Views

Author

Zak Seidov, Mar 15 2017

Keywords

Comments

Subsequence of A166311.
Numbers with digit sum 11 and even-numbered digits all 0. - Robert Israel, Mar 16 2017
Intersection of A008593 and A166311. - Michel Marcus, Mar 17 2017
If m is a term, so is 10*m. - Zak Seidov, Mar 17 2017

Examples

			a(1) = A166311(18) = 209 = 19*11,
a(40) = A166311(9881) = 30404 = 2764*11.
		

Crossrefs

Cf. A008593 (multiples of 11), A166311 (numbers with digit sum 11).

Programs

  • Maple
    F:= proc(d,t) option remember;
    if d <= 1 then
      if t <= 9 then return [t*10^d] else return [] fi;
    fi;
    [seq(seq(j*10^d+s, s = procname(d-2, t-j)), j=0..min(9, t))]
    end proc:
    sort([op(F(4,11)),op(F(5,11))]); # Robert Israel, Mar 16 2017
  • Mathematica
    Reap[Do[If[11==Total[IntegerDigits[m=11*k]],Sow[m]],{k,3000}]][[2,1]]
    Select[Range[209,30404,11],11==Total[IntegerDigits[#]]&]

A309131 Triangle read by rows: T(n, k) = (n - k)*prime(1 + k), with 0 <= k < n.

Original entry on oeis.org

2, 4, 3, 6, 6, 5, 8, 9, 10, 7, 10, 12, 15, 14, 11, 12, 15, 20, 21, 22, 13, 14, 18, 25, 28, 33, 26, 17, 16, 21, 30, 35, 44, 39, 34, 19, 18, 24, 35, 42, 55, 52, 51, 38, 23, 20, 27, 40, 49, 66, 65, 68, 57, 46, 29, 22, 30, 45, 56, 77, 78, 85, 76, 69, 58, 31
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2019

Keywords

Comments

T(n, k) is the k-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n).
The h-th subdiagonal of the triangle T gives the primes multiplied by (h + 1).
The k-th column of the triangle T gives the multiples of prime(1 + k).
Also array A(n, k) = n*prime(1 + k) read by ascending antidiagonals, with 0 <= k < n. - Michel Marcus, Jul 15 2019

Examples

			The triangle T(n, k) begins:
---+-----------------------------------------------------
n\k|    0     1     2     3     4     5     6     7     8
---+-----------------------------------------------------
1  |    2
2  |    4     3
3  |    6     6     5
4  |    8     9    10     7
5  |   10    12    15    14    11
6  |   12    15    20    21    22    13
7  |   14    18    25    28    33    26    17
8  |   16    21    30    35    44    39    34    19
9  |   18    24    35    42    55    52    51    38    23
...
For n = 3 the matrix M(3) is
          2,         3,         5
    M_{2,1},         2,         3
    M_{3,1},   M_{3,2},         2
and therefore T(3, 0) = 2 + 2 + 2 = 6, T(3, 1) = 3 + 3 = 6, and T(3, 2) = 5.
		

Crossrefs

Cf. A000040: diagonal; A001747: 1st subdiagonal; A001748: 2nd subdiagonal; A001749: 3rd subdiagonal; A001750: 4th subdiagonal; A005843: 0th column; A008585: 1st column; A008587: 2nd column; A008589: 3rd column; A008593: 4th column; A008595: 5th column; A008599: 6th column; A008601: 7th column; A014148: row sums; A138636: 5th subdiagonal; A272470: 6th subdiagonal.

Programs

  • Magma
    [[(n-k)*NthPrime(1+k): k in [0..n-1]]: n in [1..11]]; // triangle output
    
  • Maple
    a:=(n, k)->(n-k)*ithprime(1+k): seq(seq(a(n, k), k=0..n-1), n=1..11);
  • Mathematica
    Flatten[Table[(n-k)*Prime[1+k],{n,1,11},{k,0,n-1}]]
  • PARI
    T(n, k) = (n - k)*prime(1 + k);
    tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ triangle output
    
  • Sage
    [[(n-k)*Primes().unrank(k) for k in (0..n-1)] for n in (1..11)] # triangle output

Formula

T(n, k) = A025581(n, k)*A000040(1 + k).

A017390 a(n) = (11*n)^2.

Original entry on oeis.org

0, 121, 484, 1089, 1936, 3025, 4356, 5929, 7744, 9801, 12100, 14641, 17424, 20449, 23716, 27225, 30976, 34969, 39204, 43681, 48400, 53361, 58564, 64009, 69696, 75625, 81796, 88209, 94864, 101761, 108900, 116281, 123904, 131769, 139876, 148225, 156816, 165649, 174724
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/726.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/1452.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/11)/(Pi/11).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/11)/(Pi/11). (End)
G.f.: -((121*x*(1+x))/(-1+x)^3). - Harvey P. Dale, Nov 04 2021
From Elmo R. Oliveira, Nov 30 2024: (Start)
E.g.f.: 121*x*(1 + x)*exp(x).
a(n) = 121*A000290(n) = A008593(n)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A061471 First (leftmost) digit - second digit + third digit - fourth digit .... = 2.

Original entry on oeis.org

2, 20, 31, 42, 53, 64, 75, 86, 97, 101, 112, 123, 134, 145, 156, 167, 178, 189, 200, 211, 222, 233, 244, 255, 266, 277, 288, 299, 310, 321, 332, 343, 354, 365, 376, 387, 398, 420, 431, 442, 453, 464, 475, 486, 497, 530, 541, 552, 563, 574, 585, 596, 640, 651
Offset: 1

Views

Author

Amarnath Murthy, May 05 2001

Keywords

Comments

a(n) == 9*(-1)^d (mod 11) if a(n) has d digits. - Robert Israel, Aug 05 2020

Crossrefs

Programs

  • Maple
    filter:= proc(n) local d,L,j;
      L:= convert(n,base,10);
      d:= nops(L);
      add(L[j]*(-1)^(d-j),j=1..d)=2
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 05 2020
  • Mathematica
    okQ[n_] := With[{id = IntegerDigits[n]}, id.Array[2 Mod[#, 2] - 1&, Length[id]] == 2]; Select[Range[1000], okQ] (* Jean-François Alcover, Nov 17 2016 *)
    Select[Range[700],Total[Times@@@Partition[Riffle[IntegerDigits[#],{1,-1},{2,-1,2}],2]] == 2&] (* Harvey P. Dale, Mar 01 2023 *)

Extensions

More terms from Robert G. Wilson v, May 10 2001 and from Larry Reeves (larryr(AT)acm.org), May 14 2001

A061472 First (leftmost) digit - second digit + third digit - fourth digit .... = 3.

Original entry on oeis.org

3, 30, 41, 52, 63, 74, 85, 96, 102, 113, 124, 135, 146, 157, 168, 179, 201, 212, 223, 234, 245, 256, 267, 278, 289, 300, 311, 322, 333, 344, 355, 366, 377, 388, 399, 410, 421, 432, 443, 454, 465, 476, 487, 498, 520, 531, 542, 553, 564, 575, 586, 597, 630
Offset: 1

Views

Author

Amarnath Murthy, May 05 2001

Keywords

Examples

			124 is in the sequence since 1 - 2 + 4 = 3.
		

Crossrefs

Programs

  • Maple
    A225693:= proc(n) local L,m,i;
      L:= convert(n,base,10);
      m:= nops(L);
      add(L[i]*(-1)^(m-i),i=1..m);
    end proc:
    select(A225693=3, [$1..1000]); # Robert Israel, Jun 12 2019
  • Mathematica
    aQ[n_] := Differences[Total @ Take[IntegerDigits[n], {#, -1, 2}] & /@ {2, 1}][[1]] == 3; Select[Range[1000], aQ] (* Amiram Eldar, Jun 12 2019 *)
    Select[Range[1000],Total[Times@@@Partition[Riffle[IntegerDigits[#],{1,-1},{2,-1,2}],2]]==3&] (* Harvey P. Dale, May 16 2020 *)
  • PARI
    isok(n) = my(d=digits(n)); sum(k=1, #d, (-1)^(k+1)*d[k]) == 3; \\ Michel Marcus, Jun 12 2019

Formula

A225693(n) = 3. - Robert Israel, Jun 12 2019

Extensions

More terms from Robert G. Wilson v, May 10 2001 and from Larry Reeves (larryr(AT)acm.org), May 14 2001

A080467 Multiples of 11 in which the even positioned digits from left are odd and the odd positioned ones are even.

Original entry on oeis.org

0, 418, 616, 638, 814, 836, 858, 2101, 2123, 2145, 2167, 2189, 2321, 2343, 2365, 2387, 2541, 2563, 2585, 2761, 2783, 2981, 4103, 4125, 4147, 4169, 4301, 4323, 4345, 4367, 4389, 4521, 4543, 4565, 4587, 4741, 4763, 4785, 4961, 4983, 6105, 6127, 6149
Offset: 1

Views

Author

Amarnath Murthy, Mar 02 2003

Keywords

Crossrefs

Intersection of A008593 and A062285.
Cf. A080466.

Extensions

Terms corrected by Andrew Howroyd, Sep 29 2024

A083850 Exponent of highest power of 11 dividing the n-th decimal palindrome; a(0) = 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, May 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    IntegerExponent[#,11]&/@Select[Range[0,1000],PalindromeQ]/.\[Infinity]->1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 05 2020 *)

A199799 Totatives of 111111.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 17, 19, 20, 23, 25, 29, 31, 32, 34, 38, 40, 41, 43, 46, 47, 50, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 76, 79, 80, 82, 83, 85, 86, 89, 92, 94, 95, 97, 100, 101, 103, 106, 107, 109, 113, 115, 116, 118, 122, 124, 125, 127, 128, 131, 134
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 11 2011

Keywords

Comments

a(n) and 111111 are coprime, 111111 = 3*7*11*13*37; empty intersections with A008585, A008593, A008595, or A085959; sequence is finite with 51840 terms, A000010(111111) = 51840, last term: a(51840) = 111110.

Crossrefs

Cf. A109492 (divisors of 111111).

Programs

  • Haskell
    a199799 n = a199799_list !! (n-1)
    a199799_list = [x | x <- [1..111111], gcd x 111111 == 1]
  • Mathematica
    Select[Range[200],CoprimeQ[#,111111]&] (* Paolo Xausa, Sep 27 2023 *)

A243520 Numbers that are congruent to {0, 8} mod 11.

Original entry on oeis.org

0, 8, 11, 19, 22, 30, 33, 41, 44, 52, 55, 63, 66, 74, 77, 85, 88, 96, 99, 107, 110, 118, 121, 129, 132, 140, 143, 151, 154, 162, 165, 173, 176, 184, 187, 195, 198, 206, 209, 217, 220, 228, 231, 239, 242, 250, 253, 261, 264, 272, 275, 283, 286, 294, 297, 305
Offset: 0

Views

Author

Viet Quoc Le Tran, Jun 14 2014

Keywords

Comments

Union of A008593 and A017485. - Michel Marcus, Jun 15 2014
This sequence mimics in some sense the ceiling function of n/2 (the seq. A110654) relative to variations from a main class of recurrence relations; in order to get the ceiling function of n/2 (see Formula section), the vector v must be [0,1] instead of [3,8]. - R. J. Cano, Jun 15 2014

Crossrefs

Programs

  • Magma
    &cat [[11*n,11*n+8]: n in [0..30]]; // [Bruno Berselli, Jun 16 2014]
  • Maple
    A243520:=n->5*n + 2*(n mod 2) + ceil(n/2); seq(A243520(n), n=0..50); # Wesley Ivan Hurt, Jun 21 2014
  • Mathematica
    Flatten[Table[11 n + {0, 8}, {n, 0, 32}]] (* Alonso del Arte, Jun 15 2014 *)
  • PARI
    a(n)=5*n+2*(n%2)+ceil(n/2); \\ R. J. Cano, Jun 15 2014
    
  • PARI
    a(n)=if(!n,0,a(n-1)+[3,8][1+n%2]); \\ R. J. Cano, Jun 15 2014
    

Formula

a(n) = -5/4*(-1)^n + 11*n/2 + 5/4.
From R. J. Cano, Jun 15 2014: (Start)
a(n) = 5*n + 2*(n mod 2) + ceiling(n/2).
If n=0 then a(n) is zero, else a(n) = a(n-1) + v[n mod 2], where v is [3,8]. (End)
G.f.: x*(8 + 3*x) / ((1 + x)*(1 - x)^2). [Bruno Berselli, Jun 16 2014]
a(n) = sum( A010706(i), i=0..n ) - 3. [Bruno Berselli, Jun 16 2014]
E.g.f.: (11*x*exp(x) + 5*sinh(x))/2. - David Lovler, Sep 04 2022

A279895 a(n) = n*(5*n + 11)/2.

Original entry on oeis.org

0, 8, 21, 39, 62, 90, 123, 161, 204, 252, 305, 363, 426, 494, 567, 645, 728, 816, 909, 1007, 1110, 1218, 1331, 1449, 1572, 1700, 1833, 1971, 2114, 2262, 2415, 2573, 2736, 2904, 3077, 3255, 3438, 3626, 3819, 4017, 4220, 4428, 4641, 4859, 5082, 5310, 5543, 5781, 6024, 6272, 6525
Offset: 0

Views

Author

Bruno Berselli, Dec 22 2016

Keywords

Crossrefs

Second bisection of A165720.
The first differences are in A016885.
Cf. similar sequences provided by P(s,m)+s*m, where P(s,m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number: A008585 (s=2), A055999 (s=3), A028347 (s=4), A140091 (s=5), A033537 (s=6), this sequence (s=7), A067725 (s=8).

Programs

  • Magma
    [n*(5*n+11)/2: n in [0..60]];
  • Mathematica
    Table[n (5 n + 11)/2, {n, 0, 60}]
    LinearRecurrence[{3,-3,1},{0,8,21},60] (* Harvey P. Dale, Nov 14 2022 *)
  • PARI
    vector(60, n, n--; n*(5*n+11)/2)
    
  • Python
    [n*(5*n+11)/2 for n in range(60)]
    
  • Sage
    [n*(5*n+11)/2 for n in range(60)]
    

Formula

O.g.f.: x*(8 - 3*x)/(1 - x)^3.
E.g.f.: x*(16 + 5*x)*exp(x)/2.
a(n+h) - a(n-h) = h*A017281(n+1), with h>=0. A particular case:
a(n) - a(-n) = 11*n = A008593(n).
a(n+h) + a(n-h) = 2*a(n) + A033429(h), with h>=0. A particular case:
a(n) + a(-n) = A033429(n).
a(n) - a(n-2) = A017281(n) for n>1. Also:
40*a(n) + 121 = A017281(n+1)^2.
a(n) = A000566(n) + 7*n, also a(n) = A000566(n) + A008589(n). - Michel Marcus, Dec 22 2016
Previous Showing 41-50 of 79 results. Next