cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A215145 a(n) = 20*n + 1.

Original entry on oeis.org

1, 21, 41, 61, 81, 101, 121, 141, 161, 181, 201, 221, 241, 261, 281, 301, 321, 341, 361, 381, 401, 421, 441, 461, 481, 501, 521, 541, 561, 581, 601, 621, 641, 661, 681, 701, 721, 741, 761, 781, 801, 821, 841, 861, 881, 901, 921, 941, 961, 981
Offset: 0

Views

Author

Jeremy Gardiner, Aug 04 2012

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,21]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
    
  • Mathematica
    Range[1, 1001, 20]
    LinearRecurrence[{2, -1}, {1, 21}, 50] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    for(n=0, 50, print1(20*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
    
  • Scala
    (1 to 1001 by 20).toList // Alonso del Arte, Feb 20 2020

Formula

From G. C. Greubel, Apr 19 2018: (Start)
a(n) = 2*a(n - 1) - a(n - 2).
G.f.: (1 + 19*x)/(1 - x)^2.
E.g.f.: (20*x + 1)*exp(x). (End)

A105020 Array read by antidiagonals: row n (n >= 0) contains the numbers m^2 - n^2, m >= n+1.

Original entry on oeis.org

1, 3, 4, 5, 8, 9, 7, 12, 15, 16, 9, 16, 21, 24, 25, 11, 20, 27, 32, 35, 36, 13, 24, 33, 40, 45, 48, 49, 15, 28, 39, 48, 55, 60, 63, 64, 17, 32, 45, 56, 65, 72, 77, 80, 81, 19, 36, 51, 64, 75, 84, 91, 96, 99, 100, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 121
Offset: 0

Views

Author

Keywords

Comments

A "Goldbach Conjecture" for this sequence: when there are n terms between consecutive odd integers (2n+1) and (2n+3) for n > 0, at least one will be the product of 2 primes (not necessarily distinct). Example: n=3 for consecutive odd integers a(7)=7 and a(11)=9 and of the 3 sequence entries a(8)=12, a(9)=15 and a(10)=16 between them, one is the product of 2 primes a(9)=15=3*5. - Michael Hiebl, Jul 15 2007
A024352 gives distinct values in the array, minus the first row (1, 4, 9, 16, etc.). a(n) gives all solutions to the equation x^2 + xy = n, with y mod 2 = 0, x > 0, y >= 0. - Andrew S. Plewe, Oct 19 2007
Alternatively, triangular sequence of coefficients of Dynkin diagram weights for the Cartan groups C_n: t(n,m) = m*(2*n - m). Row sums are A002412. - Roger L. Bagula, Aug 05 2008

Examples

			Array begins:
  1  4  9 16 25 36  49  64  81 100 ...
  3  8 15 24 35 48  63  80  99 120 ...
  5 12 21 32 45 60  77  96 117 140 ...
  7 16 27 40 55 72  91 112 135 160 ...
  9 20 33 48 65 84 105 128 153 180 ...
  ...
Triangle begins:
   1;
   3,  4;
   5,  8,  9;
   7, 12, 15, 16;
   9, 16, 21, 24, 25;
  11, 20, 27, 32, 35, 36;
  13, 24, 33, 40, 45, 48, 49;
  15, 28, 39, 48, 55, 60, 63, 64;
  17, 32, 45, 56, 65, 72, 77, 80, 81;
  19, 36, 51, 64, 75, 84, 91, 96, 99, 100;
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Programs

  • Magma
    [(k+1)*(2*n-k+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 15 2023
    
  • Mathematica
    t[n_, m_]:= (n^2 - m^2); Flatten[Table[t[i, j], {i,12}, {j,i-1,0,-1}]]
    (* to view table *) Table[t[i, j], {j,0,6}, {i,j+1,10}]//TableForm (* Robert G. Wilson v, Jul 11 2005 *)
    Table[(k+1)*(2*n-k+1), {n,0,15}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 05 2008 *)
  • SageMath
    def A105020(n,k): return (k+1)*(2*n-k+1)
    flatten([[A105020(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Mar 15 2023

Formula

a(n) = r^2 - (r^2 + r - m)^2/4, where r = round(sqrt(m)) and m = 2*n+2. - Wesley Ivan Hurt, Sep 04 2021
a(n) = A128076(n+1) * A105020(n+1). - Wesley Ivan Hurt, Jan 07 2022
From G. C. Greubel, Mar 15 2023: (Start)
Sum_{k=0..n} T(n, k) = A002412(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*((1+(-1)^n)*A000384((n+2)/2) - (1- (-1)^n)*A000384((n+1)/2)). (End)

Extensions

More terms from Robert G. Wilson v, Jul 11 2005

A317320 Multiples of 20 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 20, 3, 40, 5, 60, 7, 80, 9, 100, 11, 120, 13, 140, 15, 160, 17, 180, 19, 200, 21, 220, 23, 240, 25, 260, 27, 280, 29, 300, 31, 320, 33, 340, 35, 360, 37, 380, 39, 400, 41, 420, 43, 440, 45, 460, 47, 480, 49, 500, 51, 520, 53, 540, 55, 560, 57, 580, 59, 600, 61, 620, 63, 640, 65, 660, 67, 680, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 24-gonal numbers (A303814).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 24-gonal numbers.

Crossrefs

Cf. A008602 and A005408 interleaved.
Column 20 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303814.

Programs

  • Mathematica
    With[{nn=40},Riffle[20*Range[0,nn],Range[1,2*nn+1,2]]] (* Harvey P. Dale, Feb 16 2020 *)
  • PARI
    concat(0, Vec(x*(1 + 20*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(n) = n, if n is odd.
a(n) = 10*n, if n is even.
a(2n) = 20*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 20*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 5*2^(e+1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 9*2^(1-s)). - Amiram Eldar, Oct 26 2023

A257391 Numbers of the form 4^p*(4^p+1)*(2^p-1) with p an odd prime.

Original entry on oeis.org

29120, 32537600, 34093383680, 36011213418659840, 36888985097480437760, 38685331082014736871587840, 39614005699412557795646504960, 41538369916519054182462860998737920, 44601490313984496701256699111250939955118080, 45671926145323068271210017365594287580527984640
Offset: 1

Views

Author

Danny Rorabaugh, Apr 21 2015

Keywords

Comments

5 divides (4^m+1) for odd m, so every term in this sequence is a multiple of 5 (A008587).
A064487(k) = 4^(2k+1)*(4^(2k+1)+1)*(2^(2k+1)-1), so this sequence is a subsequence of A064487.
Every non-solvable number (A056866) is divisible by 12 or 20. All non-solvable numbers not divisible by 12 (A008594) are divisible by a member of this sequence. In particular, every primitive non-solvable number (A257146) not divisible by 12 is in this sequence.
All terms are divisible by 320 and have at least 4 distinct prime factors. - Jianing Song, Apr 04 2022

References

Crossrefs

Subsequence of A008587, A008602, A056866, and A064487.

Programs

  • Mathematica
    Table[4^p (4^p+1)(2^p-1),{p,Prime[Range[2,20]]}] (* Harvey P. Dale, Jul 17 2024 *)
  • PARI
    a(n)=my(p=prime(n+1)); 4^p*(4^p+1)*(2^p-1) \\ Charles R Greathouse IV, Apr 21 2015
  • Sage
    [4^nth_prime(n)*(4^nth_prime(n)+1)*(2^nth_prime(n)-1) for n in range(2,12)]
    

Formula

a(n) = 4^p*(4^p+1)*(2^p-1) where p = A065091(n) = A000040(n+1).

A117798 Icosagonal numbers divisible by 20.

Original entry on oeis.org

0, 20, 820, 1200, 3440, 4180, 7860, 8960, 14080, 15540, 22100, 23920, 31920, 34100, 43540, 46080, 56960, 59860, 72180, 75440, 89200, 92820, 108020, 112000, 128640, 132980, 151060, 155760, 175280, 180340, 201300, 206720, 229120, 234900, 258740
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 29 2006

Keywords

Comments

Intersection of A008602 and A051872. - Michel Marcus, Feb 27 2014

Crossrefs

Programs

  • Mathematica
    Select[Table[PolygonalNumber[20, n], {n, 0, 200}], Divisible[#, 20] &] (* Amiram Eldar, Mar 22 2021 *)
  • PARI
    isok(n) = ispolygonal(n, 20) && !(n % 20); \\ Michel Marcus, Feb 27 2014

A169825 Multiples of 420.

Original entry on oeis.org

0, 420, 840, 1260, 1680, 2100, 2520, 2940, 3360, 3780, 4200, 4620, 5040, 5460, 5880, 6300, 6720, 7140, 7560, 7980, 8400, 8820, 9240, 9660, 10080, 10500, 10920, 11340, 11760, 12180, 12600, 13020, 13440, 13860, 14280, 14700, 15120, 15540, 15960, 16380, 16800
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2010

Keywords

Comments

Numbers that are divisible by all of 1,2,3,4,5,6,7.

Crossrefs

Programs

Formula

a(n) = 420*n. - Wesley Ivan Hurt, Apr 11 2021
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 420*x/(x-1)^2.
E.g.f.: 420*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A169823(n) = 14*A249674(n) = 15*A135628(n) = 20*A008603(n) = 21*A008602(n) = 28*A008597(n) = 30*A008596(n) = 60*A008589(n) = 420*A001477(n) = A169827(n)/2. (End)

A317095 a(n) = 40*n.

Original entry on oeis.org

0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680, 720, 760, 800, 840, 880, 920, 960, 1000, 1040, 1080, 1120, 1160, 1200, 1240, 1280, 1320, 1360, 1400, 1440, 1480, 1520, 1560, 1600, 1640, 1680, 1720, 1760, 1800, 1840, 1880
Offset: 0

Views

Author

Felix Fröhlich, Sep 07 2018

Keywords

Comments

a(n) is equal to the freshwater zone below sea level for a water table of elevation n above sea level in a simplified freshwater-saltwater interface in a coastal water-table aquifer (cf. Barlow, 2003, p. 14, eq. (2) and p. 15, Fig. B-1 and B-2).
From Bruno Berselli, Sep 10 2018: (Start)
After 0, subsequence of A065607: 1/a(n)^2 + 1/(30*n)^2 = 1/(24*n)^2, with n > 0 and a(n) > 30*n.
Also, all positive terms belong to A049094: 2^(40*n)-1 = 1024^(4*n)-1 and (25*41-1)^(4*n)-1 is divisible by 25. (End)

Crossrefs

Row n = 40 of A004247. Intersection of A008587 and A008590.
After 0, subsequence of A005101.

Programs

  • Mathematica
    Table[40 n, {n, 0, 50}] (* or *)
    LinearRecurrence[{2, -1}, {0, 40}, 50] (* or *)
    CoefficientList[Series[40*x/(1 - x)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 07 2018 *)
  • PARI
    a(n) = 40*n
    
  • PARI
    a(n) = if(n==0, 0, if(n==1, 40, 2*a(n-1)-a(n-2)))
    
  • PARI
    concat(0, Vec(40*x/(1-x)^2 + O(x^60)))

Formula

O.g.f.: 40*x/(1 - x)^2.
E.g.f.: 40*x*exp(x). - Bruno Berselli, Sep 10 2018
a(n) = 2*a(n - 1) - a(n - 2) for n > 1. - Stefano Spezia, Sep 07 2018
a(n) = A008586(A008592(n)) = 4*A008592(n).
a(n) = A010692(n)*A008586(n) = 10*A008586(n).
a(n) = A008602(A005843(n)) = 20*A005843(n).
a(n) = A007395(n)*A008602(n) = 2*A008602(n).

A332410 a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) with a(0)=0, a(1)=1, a(2)=3, a(3)=6, a(4)=11, a(5)=17, a(6)=24.

Original entry on oeis.org

0, 1, 3, 6, 11, 17, 24, 32, 41, 52, 64, 77, 91, 106, 123, 141, 160, 180, 201, 224, 248, 273, 299, 326, 355, 385, 416, 448, 481, 516, 552, 589, 627, 666, 707, 749, 792, 836, 881, 928, 976, 1025, 1075, 1126, 1179
Offset: 0

Views

Author

Paul Curtz, Feb 11 2020

Keywords

Comments

This sequence occurs twice as a linear spoke in the hexagonal spiral constructed from A002266:
17 17 17 17 17 18 18
16 11 11 11 11 12 12 18
16 11 6 6 7 7 7 12 18
16 10 6 3 3 3 3 7 12 18
16 10 6 3 1 1 1 4 7 12 19
16 10 6 2 0 0 0 1 4 8 13 19
15 10 5 2 0 0 1 4 8 13 19
15 10 5 2 2 2 4 8 13 19
15 9 5 5 5 4 8 13 19
15 9 9 9 9 8 13 20
15 14 14 14 14 14 20
a(-1-n) = 0, 1, 4, 8, 13, 19, 26, 35, 45, ... also occurs twice in the same spiral.
Difference table:
0, 1, 3, 6, 11, 17, 24, 32, 41, 52, ... = a(n)
1, 2, 3, 5, 6, 7, 8, 9, 11, 12, ... = A047256(n+1)
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, ... = A130782.
There is no linear spoke with three copies in this spiral. Compare with the spiral illustrated in sequence A330707 and constructed from A002265 where the same spokes occur three times: A006578, A001859 and A077043, essentially. Strictly, three times from 1, 1, 1 for A006578, from 2, 2, 2 for A001859 and from 7, 7, 7 for A077043.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {0, 1, 3, 6, 11, 17, 24}, 45] (* Amiram Eldar, Feb 12 2020 *)
  • PARI
    concat(0, Vec(x*(1 + x)*(1 + x^2 + x^3) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^50))) \\ Colin Barker, Feb 11 2020, Apr 24 2020

Formula

a(8+n) - a(8-n) = 20*n.
G.f.: x*(1 + x)*(1 + x^2 + x^3) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Feb 11 2020

A383488 Numbers k that have at least one divisor d_i(k) for which a divisor d_j(k) exists such that d_i(k) < d_j(k) < sigma(d_i(k)).

Original entry on oeis.org

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 170, 174, 176, 180, 186, 189, 192, 196, 198, 200, 204, 208, 210, 216
Offset: 1

Views

Author

Felix Huber, May 03 2025

Keywords

Comments

Numbers k (without multiplicity) that are multiples of lcm(c,i), where c is any composite and i is any integer from [c + 1, sigma(c) - 1].

Examples

			All multiples of 12 (A008594) are terms because 12 has the divisors 4 and 6 where sigma(4) = 7 > 6.
All multiples of 18 (A008600) are terms because 18 has the divisors 6 and 9 where sigma(6) = 12 > 9.
All multiples of 20 (A008602) are terms because 20 has the divisors 4 and 5 where sigma(4) = 7 > 5.
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A383488:=proc(n)
        option remember;
        local k,i,L;
        if n=1 then
            12
        else
            for k from procname(n-1)+1 do
                L:=Divisors(k);
                for i to nops(L)-1 do
                    if sigma(L[i])>L[i+1] then
                        return k
                    fi
                od
            od
        fi;
    end proc;
    seq(A383488(n),n=1..57);

A105179 Numbers having in decimal representation the same final digit as their largest proper divisor has; a(1) = 1.

Original entry on oeis.org

1, 11, 15, 20, 25, 31, 40, 41, 45, 60, 61, 71, 75, 80, 100, 101, 105, 120, 121, 125, 131, 135, 140, 143, 151, 160, 165, 175, 180, 181, 187, 191, 195, 200, 209, 211, 220, 225, 240, 241, 251, 253, 255, 260, 271, 275, 280, 281, 285, 300, 311, 315, 319, 320, 325
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 29 2005

Keywords

Comments

A010879(A032742(a(n))) = A010879(a(n));
A008602 is a subsequence apart from the initial term;
A030430 is a subsequence.

Examples

			n=105=3*35 and 105 == 35 modulo 10, therefore 105 is a term.
		

Programs

  • Haskell
    a105179 n = a105179_list !! (n-1)
    a105179_list = 1 : filter (\x -> a010879 (a032742 x) == a010879 x) [2..]
    -- Reinhard Zumkeller, Jan 10 2013
  • Mathematica
    Join[{1},Select[Range[2,400],Last[IntegerDigits[Divisors[#][[-2]]]] == Last[IntegerDigits[#]]&]]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    lpf(n)=factor(n)[1,1]
    is(n)=if(n%2, n%15==0||n%25==0||n==1||lpf(n)%5==1, n%20==0) \\ Charles R Greathouse IV, Jan 02 2013
    
Previous Showing 11-20 of 22 results. Next