A274342 Irregular triangle read by rows, giving the numerators of the coefficients of the Eisenstein series G_{2*n} multiplied by 2*n-1, for n >= 2. Also Laurent coefficients of Weierstrass's P function.
1, 1, 1, 3, 1, 2, 2, 60, 5, 1, 29, 485, 2, 1722, 5446, 3, 8000, 10, 5300, 270, 181188, 955290, 4, 4, 15988040, 416012, 32420068, 2682744, 223, 25851, 8409205, 49871, 301, 1713301109422, 1066033105795, 4270, 57425882, 859704866, 11125766, 77746116, 39343318862281, 501010332520, 4762
Offset: 2
Examples
The irregular triangle a(n, m) begins: n\m 1 2 3 ... 2: 1 3: 1 4: 1 5: 3 6: 1 2 7: 2 8: 60 5 9: 1 29 10: 485 2 11: 1722 5446 12: 3 8000 10 13: 5300 270 14: 181188 955290 4 15: 4 15988040 416012 16: 32420068 2682744 223 17: 25851 8409205 49871 ... row n = 18: 301 1713301109422 1066033105795 4270, row n = 19: 57425882 859704866 11125766, row n = 20: 77746116 39343318862281 501010332520 4762. The irregular triangle of rationals r(n) starts: n\m: 1 2 3 ... 2: 1/1 3: 1/1 4: 1/3 5: 3/11 6: 1/13 2/39 7: 2/33 8: 60/2431 5/663 9: 1/2 29/2717 10: 485/80223 2/1989 11: 1722/1062347 5446/3187041 12: 3/16055 8000/6605027 10/77571 13: 5300/11685817 270/1062347 ... row n = 14: 181188/2002524095 955290/4405553009 4/249951, row n = 15: 4/497705 15988040/155409680283 416012/11559397707, row n = 16: 32420068/1123416017295 2682744/74894401153 223/114727509, row n = 17: 25851/5643476995 8409205/409716429837 49871/10158258591, row n = 18: 301/909705199 1713301109422/233400836858808047 1066033105795/190964321066297493 4270/18394643943, row n = 19: 57425882/34825896536145 859704866/229850917138557 11125766/17096349208653, row n = 20: 77746116/357856262339147 39343318862281/24291640943843637507 501010332520/602272089516784401 4762/174041631153.
References
- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, p. 13.
- F. Tricomi, Elliptische Funktionen (German translation by M. Krafft of: Funzioni ellittiche), Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1948, pp. 34-35.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], ch. 18.5, pp. 635-636.
- Wolfdieter Lang, Rationals c(n), n = 2..20, and Eisenstein series G_{2*k}, k = 2..10.
Formula
a(n) = numerator(r(n)) with the rationals r(n) in lowest terms obtained from the c(n) recurrence given in a comment above as coefficients of powers of c2 and c3 corresponding to the partitions of n with parts 2 and 3 only, when sorted with increasing number of parts.
O.g.f: C(x) = Sum_{n >= 2} c(n)*x^n = x*WeierstrassP(sqrt(x), g_2 = 20*c(2), g_3 = 28*c(3)) - 1. Compare with Abramowitz-Stegun, 18.5.1, p. 635.
Nonlinear differential equation of second order for the o.g.f C(x) derived from the recurrence relation of c(n): 2*x^2*(d^2/dx^2)C(x) - 3*x*(d/dx)C(x) - 3*C(x) + 5*x^2*c(2) - 3*C(x)^2 = 0, with C(0) = 0 and C'(0) = 0.
Comments