cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A151971 Numbers n such that n^2 - n is divisible by 21.

Original entry on oeis.org

0, 1, 7, 15, 21, 22, 28, 36, 42, 43, 49, 57, 63, 64, 70, 78, 84, 85, 91, 99, 105, 106, 112, 120, 126, 127, 133, 141, 147, 148, 154, 162, 168, 169, 175, 183, 189, 190, 196, 204, 210, 211, 217, 225, 231, 232, 238, 246, 252, 253, 259, 267, 273, 274, 280, 288, 294, 295, 301, 309
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2009

Keywords

Comments

Equivalently, numbers that are congruent to {0, 1, 7, 15} mod 21. - Bruno Berselli, Aug 06 2012

Crossrefs

For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13:A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984.
Cf. A215202.

Programs

  • Magma
    [n: n in [0..309] | IsZero((n^2-n) mod 21)]; // Bruno Berselli, Aug 06 2012
    
  • Maple
    A151971:=n->(42*n+14*I^((n-1)*n)-3*I^(2*n)-3)/8-7: seq(A151971(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
  • Mathematica
    Select[Range[0,400], Divisible[#^2-#,21]&] (* Harvey P. Dale, Jun 04 2012 *)
  • Maxima
    makelist((42*n+14*%i^((n-1)*n)-3*(-1)^n-3)/8-7, n, 1, 60); /* Bruno Berselli, Aug 06 2012 */

Formula

From Bruno Berselli, Aug 06 2012: (Start)
G.f.: x^2*(1+6*x+8*x^2+6*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (42*n +14*i^((n-1)*n) -3*(-1)^n -3)/8 -7, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 07 2016
E.g.f.: (24 + (21*x - 31)*cosh(x) + 7*(sin(x) + cos(x) + (3*x - 4)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016

A215202 Irregular triangle in which n-th row gives m in 1, ..., n-1 such that m^2 == m (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 5, 6, 1, 1, 4, 9, 1, 1, 7, 8, 1, 6, 10, 1, 1, 1, 9, 10, 1, 1, 5, 16, 1, 7, 15, 1, 11, 12, 1, 1, 9, 16, 1, 1, 13, 14, 1, 1, 8, 21, 1, 1, 6, 10, 15, 16, 21, 25, 1, 1, 1, 12, 22, 1, 17, 18, 1, 15, 21, 1, 9, 28, 1, 1, 19, 20, 1, 13
Offset: 2

Views

Author

Eric M. Schmidt, Aug 05 2012

Keywords

Comments

The n-th row has length A034444(n) - 1.
If m appears in row n, then gcd(n,m) appears in the n-th row of A077610. Moreover, if m', distinct from m, also appears in row n, then gcd(n, m) does not equal gcd(n, m').
For odd n and any integer m, m^2 == m (mod n) iff m^2 == m (mod 2n).
Let P(1)={1} and for integers x > 1, let P(x) be the set of distinct prime divisors of x. We can define an equivalence relation ~ on the set of elements in the ring (Z_n, +mod n,*mod n): for all a,b in Z_n (where a,b are the least nonnegative residues modulo n) a ~ b iff P(gcd(a,n)) intersect P(n) is equal to P(gcd(b,n)) intersect P(n). If we include 0 in each row then these elements can represent the equivalence classes. They form a commutative monoid. - Geoffrey Critzer, Feb 13 2016

Examples

			Triangle begins:
1;
1;
1;
1;
1, 3, 4;
1;
1;
1;
1, 5, 6;
1;
1, 4, 9;
1;
1, 7, 8;
1, 6, 10;
1;
1;
1, 9, 10; etc.  - _Bruno Berselli_, Aug 06 2012
		

Crossrefs

For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13: A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984; n=100: A008852; n=1000: A008853.

Programs

  • Magma
    [m: m in [1..n-1], n in [2..40] | m^2 mod n eq m]; // Bruno Berselli, Aug 06 2012
  • Mathematica
    Table[Select[Range[n], Mod[#^2, n] == # &], {n, 2, 30}] // Grid (* Geoffrey Critzer, May 26 2015 *)
  • Sage
    def A215202(n) : return [m for m in range(1, n) if m^2 % n == m];
    

A326418 Nonnegative numbers k such that, in decimal representation, the subsequence of digits of k^2 occupying an odd position is equal to the digits of k.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 50, 60, 76, 100, 105, 110, 500, 501, 505, 506, 600, 605, 756, 760, 826, 1000, 1001, 1050, 1100, 5000, 5010, 5050, 5060, 5941, 6000, 6050, 7560, 7600, 8260, 10000, 10005, 10010, 10500, 10505, 11000, 12731
Offset: 1

Views

Author

Keywords

Comments

If k is in the sequence then so is 10*k. - David A. Corneth, Sep 29 2019
No term starts with the digit 2. - Chai Wah Wu, Apr 04 2023

Examples

			5^2 = 25, whose first digit is 5, hence 5 is a term of the sequence.
11^2 = 121, whose first and third digit are (1, 1), hence 11 is a term of the sequence.
756^2 = 571536, whose digits in odd positions - starting from the least significant one - are (7, 5, 6), hence 756 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 13000], Reverse@ #[[-Range[1, Length@ #, 2]]] &@ IntegerDigits[#^2] === IntegerDigits[#] &] (* Michael De Vlieger, Oct 06 2019 *)
  • PARI
    isok(n) = my(d=Vecrev(digits(n^2))); fromdigits(Vecrev(vector((#d+1)\2, k, d[2*k-1]))) == n; \\ Michel Marcus, Oct 01 2019
    
  • Python
    def ok(n): s = str(n*n); return n == int("".join(s[1-len(s)%2::2]))
    print(list(filter(ok, range(13000)))) # Michael S. Branicky, Sep 10 2021

A357529 Triangular numbers k such that 2*k cannot be expressed as a sum of two distinct triangular numbers.

Original entry on oeis.org

0, 1, 6, 10, 15, 45, 55, 66, 91, 120, 136, 231, 276, 300, 406, 435, 496, 561, 595, 630, 741, 780, 820, 861, 1081, 1225, 1326, 1431, 1830, 2016, 2080, 2145, 2211, 2415, 2485, 2701, 2850, 3240, 3321, 3486, 3655, 3916, 4005, 4465, 4560, 4950, 5050, 5356, 5460, 5565
Offset: 1

Views

Author

Stefano Spezia, Oct 02 2022

Keywords

Comments

Subset of even terms of A357505, divided by 2. - Michel Marcus, Nov 05 2022

Crossrefs

Cf. A000217 (supersequence), A002378.
Half of the complement of A357504 in A020756.
Half of the complement of A020757 in A357505.
Subsequence of A008851.

Programs

  • Mathematica
    TriangularQ[n_]:=IntegerQ[(Sqrt[1+8n]-1)/2]; A000217[n_]:=n(n+1)/2; a={}; For[k=0, k<=105, k++, ok=1; For[h=0, h<2k, h++, If[TriangularQ[2*A000217[k] - A000217[h]] && k!=h, ok=0]]; If[ok==1, AppendTo[a,k(k+1)/2]]]; a (* Stefano Spezia, Nov 05 2022 *)

A370753 Antidiagonal products of A319840.

Original entry on oeis.org

1, 1, 4, 36, 576, 12800, 360000, 12192768, 481890304, 21743271936, 1101996057600, 61952000000000, 3824628881965056, 257164113195565056, 18704075505689706496, 1462975070062038220800, 122444006400000000000000, 10918111308394619734065152, 1033255398127440061257744384
Offset: 0

Views

Author

Stefano Spezia, Jun 22 2024

Keywords

Comments

a(n) has trailing zeros iff n is congruent to 0 or 1 mod 5. Cf. A008851.
a(n) is a square iff n = 1 or congruent to {1, 3, 4} mod 5. Cf. A047206.
It appears that: (Start)
a(n) is a cube iff n = 0, 1, or is of the form (3*m - 4)^3 with m > 1 (A016791);
the only fourth powers in the sequence are 1 and a(9) = 21743271936 = 384^4;
the only fifth powers in the sequence are 1 and a(32) = 227200942336^5;
a(n) is a sixth power iff n = 0, 1, or is of the form (6*m - 10)^3 with m > 1;
the only seventh powers in the sequence are 1 and a(128) = 77458109039896212820250015287665035595218944^7. (End)

Crossrefs

Programs

  • Mathematica
    a[0]=a[1]=1; a[n_]:=n^2*2^(n-2)*(n-1)^(n-2); Array[a,19,0]

Formula

a(0) = a(1) = 1, and a(n) = n^2*2^(n-2)*(n - 1)^(n-2) for n > 1.

A222170 a(n) = n^2 + 2*floor(n^2/3).

Original entry on oeis.org

0, 1, 6, 15, 26, 41, 60, 81, 106, 135, 166, 201, 240, 281, 326, 375, 426, 481, 540, 601, 666, 735, 806, 881, 960, 1041, 1126, 1215, 1306, 1401, 1500, 1601, 1706, 1815, 1926, 2041, 2160, 2281, 2406, 2535, 2666, 2801, 2940, 3081, 3226, 3375, 3526, 3681, 3840
Offset: 0

Views

Author

Bruno Berselli, Aug 08 2013

Keywords

Comments

Also, a(n) = n^2 + floor(2*n^2/3), since 2*floor(n^2/3) = floor(2*n^2/3).

Crossrefs

Subsequence of A008851.
Cf. A004773 (numbers of the type n+floor(n/3)), A008810 (numbers of the type n^2-2*floor(n^2/3)), A047220 (numbers of the type n+floor(2*n/3)), A184637 (numbers of the type n^2+floor(n^2/3), except the first two).

Programs

  • Magma
    [n^2+2*Floor(n^2/3): n in [0..50]];
    
  • Magma
    I:=[0,1,6,15,26]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-3)-2*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    Table[n^2 + 2 Floor[n^2/3], {n, 0, 50}]
    CoefficientList[Series[x (1 + x) (1 + 3 x + x^2) / ((1 + x + x^2) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{2, -1, 1, -2, 1}, {0, 1, 6, 15, 26}, 50] (* Hugo Pfoertner, Jan 17 2023 *)

Formula

G.f.: x*(1+x)*(1 + 3*x + x^2)/((1 + x + x^2)*(1-x)^3).
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(n) = floor(5*n^2/3). - Wesley Ivan Hurt, Mar 16 2015
a(n) = a(n-3) + 5*(2n-3) [Tadeusz Dorozinski]. - Eduard Baumann, Jan 18 2023

A270343 Numbers k that end with ( sum of digits of k )^2.

Original entry on oeis.org

0, 1, 81, 3144, 3256, 6225, 6484, 6576, 7121, 7529, 7676, 9100, 9324, 9361, 9729, 9784, 12144, 12256, 15225, 15484, 15576, 16121, 16529, 16676, 18100, 18324, 18361, 18729, 18784, 21144, 21256, 24225, 24484, 24576, 25121
Offset: 1

Views

Author

Soumil Mandal, Mar 15 2016

Keywords

Comments

All terms end with a digit from the set S = {0,1,4,5,6,9}.
The sum of the digits of the numbers repeat and also change with regular intervals. For example, the sum of the digits S1 = {12,16,15,22,24,11,23,26,10,18,19,27,28} which is followed by 3144 to 8784, 12144 to 18784, 21144 to 27784, 30144 to 36784. Again S2 = {21,25,15,22,24,11,23,26,10,18,19,27,28} is followed by 39441 to 45784, 48441 to 54784, 57441 to 67784, 66441 to 72784. It can be seen that a set containing 13 elements repeats itself for 4 consecutive ranges.

Examples

			For k=3256, sum of digits is 16 and 16^2 is 256.
For k=7121, sum of digits is 11 and 11^2 is 121.
For k=18784, sum of digits is 22 and 22^2 is 484.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 20000], Function[n, Function[k, If[n >= k, FromDigits@ Take[#, -IntegerLength@ k] == k, False]][Total[#]^2] &@ IntegerDigits@ n]] (* Michael De Vlieger, Mar 15 2016 *)
    esdQ[n_]:=Module[{idn=IntegerDigits[n],idn2=IntegerDigits[ Total[ IntegerDigits[ n]]^2]},Take[ idn,-Length[idn2]]==idn2]; Select[ Range[ 0,26000],esdQ]//Quiet (* Harvey P. Dale, Jan 01 2022 *)
  • PARI
    isok(n) = {sds = sumdigits(n)^2; nbs = #Str(sds); ((n - sds) % 10^nbs) == 0;} \\ Michel Marcus, Mar 16 2016
    
  • Python
    for i in range(0,200000):
        res = pow((sum(map(int,str(i)))),2)
        if(i%pow(10,len(str(res)))==res):print(i)
    # Soumil Mandal, Mar 17 2016
Previous Showing 31-37 of 37 results.