cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 199 results. Next

A008329 Number of divisors of p+1, p prime.

Original entry on oeis.org

2, 3, 4, 4, 6, 4, 6, 6, 8, 8, 6, 4, 8, 6, 10, 8, 12, 4, 6, 12, 4, 10, 12, 12, 6, 8, 8, 12, 8, 8, 8, 12, 8, 12, 12, 8, 4, 6, 16, 8, 18, 8, 14, 4, 12, 12, 6, 12, 12, 8, 12, 20, 6, 18, 8, 16, 16, 10, 4, 8, 6, 12, 12, 16, 4, 8, 6, 6, 12, 12, 8, 24, 10, 8, 12, 16, 16, 4, 8, 8, 24, 4, 20, 8, 16
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [NumberOfDivisors(NthPrime(n)+1): n in [1..100]]; // Vincenzo Librandi, Mar 25 2018
  • Maple
    for i from 1 to 500 do if isprime(i) then print(tau(i+1)); fi; od;
    A008329 := proc(n)
            numtheory[tau](ithprime(n)+1) ;
    end proc: # R. J. Mathar, Oct 30 2015
  • Mathematica
    DivisorSigma[0,#]&/@(Prime[Range[100]]+1)  (* Harvey P. Dale, Apr 12 2011 *)
  • PARI
    a(n) = numdiv(prime(n)+1); \\ Michel Marcus, Mar 25 2018
    

Formula

a(n) = A000005(A008864(n)). - Sean A. Irvine, Mar 25 2018

Extensions

Offset corrected by Leroy Quet, Oct 08 2008

A084921 a(n) = lcm(p-1, p+1) where p is the n-th prime.

Original entry on oeis.org

3, 4, 12, 24, 60, 84, 144, 180, 264, 420, 480, 684, 840, 924, 1104, 1404, 1740, 1860, 2244, 2520, 2664, 3120, 3444, 3960, 4704, 5100, 5304, 5724, 5940, 6384, 8064, 8580, 9384, 9660, 11100, 11400, 12324, 13284, 13944, 14964, 16020, 16380
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Comments

This sequence consists of terms of sequences A055523 and A055527 for prime n > 2. - Toni Lassila (tlassila(AT)cc.hut.fi), Feb 02 2004

Crossrefs

Programs

  • Haskell
    a084921 n = lcm (p - 1) (p + 1)  where p = a000040 n
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [3] cat [(p^2-1)/2: p in PrimesInInterval(3,300)]; // G. C. Greubel, May 03 2024
    
  • Mathematica
    LCM[#-1,#+1]&/@Prime[Range[50]] (* Harvey P. Dale, Oct 09 2018 *)
  • PARI
    a(n)=if(n<2,3,(prime(n)^2-1)/2) \\ Charles R Greathouse IV, May 15 2013
    
  • SageMath
    [3]+[(n^2-1)/2 for n in prime_range(3,301)] # G. C. Greubel, May 03 2024

Formula

a(n) = A084920(n)/2 for n > 1.
a(n) = 3*A084922(n) for n > 2.
a(n) = A009286(A000040(n)). - Enrique Pérez Herrero, May 17 2012
a(n) ~ 0.5 n^2 log^2 n. - Charles R Greathouse IV, May 15 2013
Product_{n>=1} (1 + 1/a(n)) = 2. - Amiram Eldar, Jan 23 2021
a(n) = (A000040(n)^2 - 1) / 2 for n > 1. - Christian Krause, Mar 27 2021
a(n) = (3/2)*A024700(n-2), for n > 1. - G. C. Greubel, May 03 2024

A377703 First differences of the sequence A345531(k) = least prime-power greater than the k-th prime.

Original entry on oeis.org

1, 3, 1, 5, 3, 3, 4, 2, 6, 1, 9, 2, 4, 2, 10, 2, 3, 7, 2, 6, 2, 8, 8, 4, 2, 4, 2, 4, 8, 7, 9, 2, 10, 2, 6, 6, 4, 2, 10, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 13, 7, 6, 2, 6, 4, 2, 6, 18, 4, 2, 4, 14, 6, 6, 6, 4, 6, 2, 12, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 07 2024

Keywords

Comments

What is the union of this sequence? In particular, does it contain 17?

Crossrefs

First differences of A345531.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A080101 counts prime-powers between primes (exclusive).
A246655 lists the prime-powers, differences A057820 without first term.
A361102 lists the non-powers of primes, differences A375708.
A366833 counts prime-powers between primes, see A053607, A304521, A377057 (positive), A377286 (zero), A377287 (one), A377288 (two).
A377432 counts perfect-powers between primes, see A377434 (one), A377436 (zero), A377466 (multiple).

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&, Prime[n]+1,!PrimePowerQ[#]&],{n,100}]]
  • Python
    from sympy import factorint, prime, nextprime
    def A377703(n): return -next(filter(lambda m:len(factorint(m))<=1, count((p:=prime(n))+1)))+next(filter(lambda m:len(factorint(m))<=1, count(nextprime(p)+1))) # Chai Wah Wu, Nov 14 2024

A373821 Run-lengths of run-lengths of first differences of odd primes.

Original entry on oeis.org

1, 11, 1, 19, 1, 1, 1, 5, 1, 6, 1, 16, 1, 27, 1, 3, 1, 1, 1, 6, 1, 9, 1, 29, 1, 2, 1, 18, 1, 1, 1, 5, 1, 3, 1, 17, 1, 19, 1, 30, 1, 17, 1, 46, 1, 17, 1, 27, 1, 30, 1, 5, 1, 36, 1, 41, 1, 10, 1, 31, 1, 44, 1, 4, 1, 14, 1, 6, 1, 2, 1, 32, 1, 13, 1, 17, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of A333254.
The first term other than 1 at an odd positions is at a(101) = 2.
Also run-lengths (differing by 0) of run-lengths (differing by 0) of run-lengths (differing by 1) of composite numbers.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with run-lengths:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, ...
with run-lengths a(n).
		

Crossrefs

Run-lengths of run-lengths of A046933(n) = A001223(n) - 1.
Run-lengths of A333254.
A000040 lists the primes.
A001223 gives differences of consecutive primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.
For prime runs: A001359, A006512, A025584, A067774, A373406.
For composite runs: A005381, A008864, A054265, A176246, A251092, A373403.

Programs

  • Mathematica
    Length/@Split[Length /@ Split[Differences[Select[Range[3,1000],PrimeQ]]]//Most]//Most

A377288 Numbers k such that there are exactly two prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

4, 9, 30, 327, 3512
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Comments

Is this sequence finite? For this conjecture see A053706, A080101, A366833.
Any further terms are > 10^12. - Lucas A. Brown, Nov 08 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24, 25, 26, 27, 28) contains the prime-powers 25 and 27, so 9 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933 elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053706.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
These are the positions of 2 in A080101, or 3 in A366833.
For at least one prime-power we have A377057, primes A053607.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For squarefree instead of prime-power see A377430, A061398, A377431, A068360.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==2&]

Formula

prime(a(n)) = A053706(n).

A023509 Greatest prime divisor of prime(n) + 1.

Original entry on oeis.org

3, 2, 3, 2, 3, 7, 3, 5, 3, 5, 2, 19, 7, 11, 3, 3, 5, 31, 17, 3, 37, 5, 7, 5, 7, 17, 13, 3, 11, 19, 2, 11, 23, 7, 5, 19, 79, 41, 7, 29, 5, 13, 3, 97, 11, 5, 53, 7, 19, 23, 13, 5, 11, 7, 43, 11, 5, 17, 139, 47, 71, 7, 11, 13, 157, 53, 83, 13, 29, 7, 59, 5, 23, 17, 19, 3, 13
Offset: 1

Views

Author

Keywords

Comments

A005382 is the records subsequence of this sequence. - David James Sycamore, May 05 2025

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[Prime[n] + 1][[-1, 1]], {n, 100}]
  • PARI
    A023509(n) = {local(f);f=factor(prime(n)+1);f[matsize(f)[1],1]} \\ Michael B. Porter, Feb 02 2010

Formula

a(n) = A006530(A008864(n)). - R. J. Mathar, Feb 06 2019

A028815 a(n) = prime(n) + 1 (starting with 1).

Original entry on oeis.org

2, 3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284
Offset: 0

Views

Author

Keywords

Comments

n-th noncomposite (unit or prime) positive integer + 1.
The "0th prime" is defined to be 1 (a unit, formerly considered to be prime).

Crossrefs

Programs

Formula

a(n) = prime(n) + 1 = A000040(n) + 1 = A008864(n) for n >= 1.
a(n) = A008578(n+1) + 1, n >= 0.
a(n) = 2*A006254(n-1), for n >= 2, with a(0) = 2, a(1) = 3. - G. C. Greubel, Aug 05 2024

A113935 a(n) = prime(n) + 3.

Original entry on oeis.org

5, 6, 8, 10, 14, 16, 20, 22, 26, 32, 34, 40, 44, 46, 50, 56, 62, 64, 70, 74, 76, 82, 86, 92, 100, 104, 106, 110, 112, 116, 130, 134, 140, 142, 152, 154, 160, 166, 170, 176, 182, 184, 194, 196, 200, 202, 214, 226, 230, 232, 236, 242, 244, 254, 260, 266, 272, 274
Offset: 1

Views

Author

Jorge Coveiro, Jan 30 2006

Keywords

Crossrefs

Programs

Formula

a(n) = A116366(n-1,1) for n>1. - Reinhard Zumkeller, Feb 06 2006
a(n) = 2*A098090(n-1) for n > 1. - Reinhard Zumkeller, Sep 14 2006
a(n) = A000040(n) + 3 = A008864(n) + 2 = A052147(n) + 1 = A175221(n) - 1 = A175222(n) - 2 = A139049(n) - 3 = A175223(n) - 4 = A175224(n) - 5 = A140353(n) - 6 = A175225(n) - 7. - Jaroslav Krizek, Mar 06 2010

A239712 Primes of the form m = 2^i + 2^j - 1, where i > j >= 0.

Original entry on oeis.org

2, 5, 11, 17, 19, 23, 47, 67, 71, 79, 131, 191, 257, 263, 271, 383, 1031, 1039, 1087, 1151, 1279, 2063, 2111, 4099, 4111, 4127, 4159, 5119, 6143, 8447, 16447, 20479, 32771, 32783, 32831, 33023, 33791, 65537, 65539, 65543, 65551, 65599, 66047, 73727, 81919, 262147, 262151, 262271, 262399, 263167
Offset: 1

Views

Author

Hieronymus Fischer, Mar 28 2014 and Apr 22 2014

Keywords

Comments

Numbers m such that b = 2 is the only base such that the base-b digital sum of m + 1 is equal to b.
Example: 5 + 1 = 110_2 which implies ds_2(5 + 1) = 2 = b, where ds_b = digital sum in base-b. However, ds_3(6) = 2 <> 3, ds_4(6) = 3 <> 4, ds_5(6) = 2 <> 5, ds_6(6) = 1 <> 6. For all other bases > 6 we have ds_b(6) = 6 <> b. It follows that b = 2 is the only such base.
The base-2 representation of a term 2^i + 2^j - 1 has a base-2 digital sum of 1 + j.
In base-2 representation the first terms are 10, 101, 1011, 10001, 10011, 10111, 101111, 1000011, 1000111, 1001111, 10000011, 10111111, 100000001, 100000111, 100001111, 101111111, 10000000111, 10000001111, 10000111111, 10001111111, ...
Numbers m = 2^i + 2^j - 1 with odd i and j are not terms. Example: 10239 = 2^13 + 2^11 - 1 is not a prime.

Examples

			a(1) = 2, since 2 = 2^1 + 2^0 - 1 is prime.
a(5) = 19, since 19 = 2^4 + 2^2 - 1 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Union[Total/@(2^#&/@Subsets[Range[0,20],{2}])-1],PrimeQ] (* Harvey P. Dale, Aug 08 2014 *)
  • Smalltalk
    A239712
    "Answers the n-th term of A239712.
      Usage: n A239712
      Answer: a(n)"
      | a b i k m p q terms |
      terms := OrderedCollection new.
      b := 2.
      p := 1.
      k := 0.
      m := 0.
      [k < self] whileTrue:
             [m := m + 1.
             p := b * p.
             q := 1.
             i := 0.
             [i < m and: [k < self]] whileTrue:
                       [i := i + 1.
                       a := p + q - 1.
                       a isPrime
                            ifTrue:
                                [k := k + 1.
                                terms add: a].
                       q := b * q]].
      ^terms at: self
    [by Hieronymus Fischer, Apr 22 2014]
    -----------
    
  • Smalltalk
    floorPrimesWhichAreDistinctPowersOf: b withOffset: d
      "Answers an array which holds the primes < n that obey b^i + b^j + d, i>j>=0,
      where n is the receiver. b > 1 (here: b = 2, d = -1).
      Uses floorDistinctPowersOf: from A018900
      Usage:
      n floorPrimesWhichAreDistinctPowersOf: b withOffset: d
      Answer: #(2 5 11 17 19 23 ...) [terms < n]"
      ^((self - d floorDistinctPowersOf: b)
      collect: [:i | i + d]) select: [:i | i isPrime]
    [by Hieronymus Fischer, Apr 22 2014]
    ------------
    
  • Smalltalk
    primesWhichAreDistinctPowersOf: b withOffset: d
      "Answers an array which holds the n primes of the form b^i + b^j + d, i>j>=0, where n is the receiver.
      Direct calculation by scanning b^i + b^j + d in increasing order and selecting terms which are prime.
      b > 1; this sequence: b = 2, d = 1.
      Usage:
      n primesWhichAreDistinctPowersOf: b withOffset: d
      Answer: #(2 5 11 17 19 23 ...) [a(1) ... a(n)]"
      | a k p q terms n |
      terms := OrderedCollection new.
      n := self.
      k := 0.
      p := b.
      [k < n] whileTrue:
             [q := 1.
             [q < p and: [k < n]] whileTrue:
                       [a := p + q + d.
                       a isPrime
                            ifTrue:
                                [k := k + 1.
                                terms add: a].
                       q := b * q].
             p := b * p].
      ^terms asArray
    [by Hieronymus Fischer, Apr 22 2014]

Formula

a(n) = A239708(n) - 1.
a(n+1) = min(A018900(k) > a(n)| A018900(k) - 1 is prime, k >= 1) - 1.

Extensions

Examples moved from Maple field to Examples field by Harvey P. Dale, Aug 08 2014

A055670 a(n) = prime(n) - (-1)^prime(n).

Original entry on oeis.org

1, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

Number of right-inequivalent prime Hurwitz quaternions of norm p, where p = n-th rational prime (indexed by A000040).
Two primes are considered right-equivalent if they differ by right multiplication by one of the 24 units. - N. J. A. Sloane
Start of n-th run of consecutive nonprime numbers. Since 2 is the only even prime, for all other prime numbers the expression "- (-1)^(n-th prime)" works out to "+ 1." - Alonso del Arte, Oct 18 2011

Examples

			a(1) = 2 - (-1)^2 = 1, a(2) = 3 - (-1)^3 = 4.
		

References

  • L. E. Dickson, Algebras and Their Arithmetics, Dover, 1960, Section 91.
  • Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology, Dover, New York, 1978, page 134.

Crossrefs

a(n) = A083503(p) for n>1.

Programs

  • Mathematica
    Join[{1},Prime[Range[2,70]]+1] (* Harvey P. Dale, Oct 29 2013 *)

Formula

a(n) = prime(n)+1 = A008864(n) for n >= 2. a(n) = A055669(n)/24.

Extensions

More terms from David W. Wilson, May 02 2001
I would also like to get the sequences of inequivalent prime Hurwitz quaternions, where two primes are considered equivalent if they differ by left or right multiplication by one of the 24 units. This will give two more sequences, analogs of A055670 and A055672.
Edited by N. J. A. Sloane, Aug 16 2009
Previous Showing 41-50 of 199 results. Next