cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A160464 The Eta triangle.

Original entry on oeis.org

-1, -11, 2, -114, 29, -2, -3963, 1156, -122, 4, -104745, 32863, -4206, 222, -4, -3926745, 1287813, -184279, 12198, -366, 4, -198491580, 67029582, -10317484, 781981, -30132, 562, -4
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

The ES1 matrix coefficients are defined by ES1[2*m-1,n] = 2^(2*m-1) * int(y^(2*m-1)/(cosh(y))^(2*n),y=0..infinity)/(2*m-1)! for m = 1, 2, 3, .. and n = 1, 2, 3 .. .
This definition leads to ES1[2*m-1,n=1] = 2*eta(2*m-1) and the recurrence relation ES1[2*m-1,n] = ((2*n-2)/(2*n-1))*(ES1[2*m-1,n-1] - ES1[2*m-3,n-1]/(n-1)^2) which we used to extend our definition of the ES1 matrix coefficients to m = 0, -1, -2, .. . We discovered that ES1[ -1,n] = 0.5 for n = 1, 2, .. . As usual eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function.
The coefficients in the columns of the ES1 matrix, for m = 1, 2, 3, .. , and n = 2, 3, 4 .. , can be generated with the polynomials GF(z,n) for which we found the following general expression GF(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GF(z;n=1) + ETA(z,n))/p(n).
The CFN1(z,n) polynomials depend on the central factorial numbers A008955.
The ETA(z,n) are the Eta polynomials which lead to the Eta triangle.
The zero patterns of the Eta polynomials resemble a UFO. These patterns resemble those of the Zeta, Beta and Lambda polynomials, see A160474, A160480 and A160487.
The first Maple algorithm generates the coefficients of the Eta triangle. The second Maple algorithm generates the ES1[2*m-1,n] coefficients for m= 0, -1, -2, -3, .. .
The M(n) sequence, see the second Maple algorithm, leads to Gould's sequence A001316 and a sequence that resembles the denominators of the Taylor series for tan(x), A156769(n).
Some of our results are conjectures based on numerical evidence, see especially A160466.

Examples

			The first few rows of the triangle ETA(n,m) with n=2,3,.. and m=1,2,... are
  [ -1]
  [ -11, 2]
  [ -114, 29, -2]
  [ -3963, 1156, -122, 4].
The first few ETA(z,n) polynomials are
  ETA(z,n=2) = -1;
  ETA(z,n=3) = -11+2*z^2;
  ETA(z,n=4) = -114 + 29*z^2 - 2*z^4.
The first few CFN1(z,n) polynomials are
  CFN1(z,n=2) = (z^2-1);
  CFN1(z,n=3) = (z^4 - 5*z^2 + 4);
  CFN1(z,n=4) = (z^6 - 14*z^4 + 49*z^2 - 36).
The first few generating functions GF(z;n) are:
  GF(z;n=2) = ((-1)*2*(z^2 - 1)*GF(z;n=1) + (- 1))/3;
  GF(z;n=3) = (4*(z^4 - 5*z^2+4) *GF(z;n=1) + (-11 + 2*z^2))/30;
  GF(z;n=4) = ((-1)*4*(z^6 - 14*z^4 + 49*z^2 - 36)*GF(z;n=1) + (-114 + 29*z^2 - 2*z^4))/315.
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

The r(n) sequence equals A062383 (n>=1).
The p(n) sequence equals A160473(n) (n>=2).
The GCS(n) sequence equals the Geometric Connell sequence A049039(n).
The M(n-1) sequence equals A001316(n-1)/A156769(n) (n>=1).
The q(n) sequence leads to A081729 and the 'gossip sequence' A007456.
The first right hand column equals A053644 (n>=1).
The first left hand column equals A160465.
The row sums equal A160466.
The CFN1(z, n) and the cfn1(n, k) lead to A008955.
Cf. A094665 and A160468.
Cf. the Zeta, Beta and Lambda triangles A160474, A160480 and A160487.
Cf. A162440 (EG1 matrix).

Programs

  • Maple
    nmax:=8; c(2 ):= -1/3: for n from 3 to nmax do c(n) := (2*n-2)*c(n-1)/(2*n-1)-1/((n-1)*(2*n-1)) end do: for n from 2 to nmax do GCS(n-1) := ln(1/(2^(-(2*(n-1)-1-floor(ln(n-1)/ ln(2))))))/ln(2); p(n) := 2^(-GCS(n-1))*(2*n-1)!; ETA(n, 1) := p(n)*c(n); ETA(n, n) := 0 end do: mmax:=nmax: for m from 2 to mmax do for n from m+1 to nmax do q(n) := (1+(-1)^(n-3)*(floor(ln(n-1)/ln(2)) - floor(ln(n-2)/ln(2)))): ETA(n, m) := q(n)*((-1)*ETA(n-1, m-1)+(n-1)^2*ETA(n-1, m)) end do end do: seq(seq(ETA(n,m), m=1..n-1), n=2..nmax);
    # End first program.
    nmax1:=20; m:=1; ES1row:=1-2*m; with (combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: mmax1:=nmax1: for m1 from 1 to mmax1 do M(m1-1) := 2^(2*m1-2)/((2*m1-1)!); ES1[-2*m1+1,1] := 2*(1-2^(1-(1-2*m1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do ES1[1-2*m1, n] := (-1)^(n-1)*M(n-1)*sum((-1)^(k+1)*cfn1(n-1,k-1)* ES1[2*k-2*n-2*m1+1, 1], k=1..n) od: od: seq(ES1[1-2*m, n], n=1..nmax1-m+1);
    # End second program.

Formula

We discovered an interesting relation between the Eta triangle coefficients ETA(n,m) = q(n)*((-1)*ETA(n-1,m-1)+(n-1)^2*ETA(n-1,m)), for n = 3, 4, ... and m = 2, 3, ... , with
q(n) = 1 + (-1)^(n-3)*(floor(log(n-1)/log(2)) - floor(log(n-2)/log(2))) for n = 3, 4, ....
See A160465 for ETA(n,m=1) and furthermore ETA(n,n) = 0 for n = 2, 3, ....
The generating functions GF(z;n) of the coefficients in the matrix columns are defined by
GF(z;n) = sum_{m>=1} ES1[2*m-1,n] * z^(2*m-2), with n = 1, 2, 3, .... This leads to
GF(z;n=1) = (2*log(2) - Psi(z) - Psi(-z) + Psi(1/2*z) + Psi(-1/2*z)); Psi(z) is the digamma-function.
GF(z;n) = ((2*n-2)/(2*n-1)-2*z^2/((n-1)*(2*n-1)))*GF(z;n-1)-1/((n-1)*(2*n-1)).
We found for GF(z;n), for n = 2, 3, ..., the following general expression:
GF(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GF(z;n=1) + ETA(z,n) )/p(n) with
r(n) = 2^floor(log(n-1)/log(2)+1) and
p(n) = 2^(-GCS(n))*(2*n-1)! with
GCS(n) = log(1/(2^(-(2*(n-1)-1-floor(log(n-1)/ log(2))))))/log(2).

A162005 The EG1 triangle.

Original entry on oeis.org

1, 2, 1, 16, 28, 1, 272, 1032, 270, 1, 7936, 52736, 36096, 2456, 1, 353792, 3646208, 4766048, 1035088, 22138, 1, 22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1, 1903757312, 38188155904, 120536980224, 93989648000
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2009, Jul 02 2009, Aug 31 2009

Keywords

Comments

We define the EG1 matrix by EG1[2m-1,1] = 2*eta(2m-1) and the recurrence relation EG1[2m-1,n] = EG1[2m-1,n-1] - EG1[2m-3,n-1]/(n-1)^2 for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .., with eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. For the EG2[2m,n] coefficients see A008955.
The n-th term of the row coefficients EG1[1-2*m,n] for m = 1, 2, .., can be generated with REG1(1-2*m,n) = (-1)^(m+1)*2^(1-m)*ECGP(1-2*m, n)*(1/n)*4^(-n)*(2*n)!/((n-1)!)^2 . For information about the ECGP polynomials see A094665 and the examples below.
We define the o.g.f.s. of the REG1(1-2*m,n) by GFREG1(z,1-2*m) = sum(REG1(1-2*m,n)* z^(n-1), n=1..infinity) for m = 1, 2, .., with GFREG1(z,1-2*m) = (-1)^(m+1)* RG(z,1-2*m)/ (2^(2*m-1)*(1-z)^((2*m+1)/2)). The RG(z,1-2m) polynomials led to the EG1 triangle.
We used the coefficients of the A156919 and A094665 triangles to determine those of the EG1 triangle, see the Maple program. The A156919 triangle gives information about the sums SF(p) = sum(n^(p-1)*4^(-n)*z^(n-1)*(2*n)!/((n-1)!)^2, n=1..infinity) for p= 0, 1, 2, .. .
Contribution from Johannes W. Meijer, Nov 23 2009: (Start)
The EG1 matrix is related to the ED2 array A167560 because sum(EG1(2*m-1,n)*z^(2*m-1), m=1..infinity) = ((2*n-1)!/(4^(n-1)*(n-1)!^2))*int(sinh(y*(2*z))/cosh(y)^(2*n),y=0..infinity).
(End)
Appears to equal triangle A322230 with rows read in reverse order. Triangle A322230 describes the e.g.f. S(x,k) = Integral C(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1. - Paul D. Hanna, Dec 22 2018
Appears to equal triangle A325220, which has e.g.f. S(x,k) = -i * sn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where sn(x,k) and cn(x,k) are Jacobi Elliptic functions. - Paul D. Hanna, Apr 13 2019

Examples

			The first few rows of the EG1 triangle are :
[1]
[2, 1]
[16, 28, 1]
[272, 1032, 270, 1]
The first few RG(z,1-2*m) polynomials are:
RG(z,-1) = 1
RG(z,-3) = 2+z
RG(z,-5) = 16+28*z+z^2
RG(z,-7) = 272+1032*z+270*z^2+z^3
The first few GFREG1(z,1-2*m) are:
GFREG1(z,-1) = (1)*(1)/(2*(1-z)^(3/2))
GFREG1(z,-3) = (-1)*(2+z)/(2^3*(1-z)^(5/2))
GFREG1(z,-5) = (1)*(16+28*z+z^2)/( 2^5*(1-z)^(7/2))
GFREG1(z,-7) = (-1)*(272+1032*z+270*z^2+z^3)/(2^7*(1-z)^(9/2))
The first few REG1(1-2*m,n) are:
REG1(-1,n) = (1/1)*(1)*(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-3,n) = (-1/2)*(n) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-5,n) = (1/4) *(n+3*n^2) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-7,n) = (-1/8)*(4*n+15*n^2+15*n^3) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
The first few ECGP(1-2*m,n) polynomials are:
ECGP(-1,n) = 1
ECGP(-3,n) = n
ECGP(-5,n) = n+3*n^2
ECGP(-7,n) = 4*n+15*n^2+15*n^3
		

Crossrefs

A079484 equals the row sums.
A000182 (ZAG numbers), A162006 and A162007 equal the first three left hand columns.
A000012, A004004 (2x), A162008, A162009 and A162010 equal the first five right hand columns.
Related to A094665, A083061 and A156919 (DEF triangle).
Cf. A161198 [(1-x)^((-1-2*n)/2)], A008955 (EG2[2m, n])
Cf. A167560 (ED2 array).
Cf. A322230 (reversed rows), A325220.

Programs

  • Maple
    nmax:=7; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1)*T1(i-1, x+1)-2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1)*A156919(n-1, m-1) end do end do: for n from 0 to nmax do SF(n) := sum(A156919(n, k1)*z^k1, k1=0..n)/(2^(n+1)*(1-z)^((2*n+3)/2)) od: GFREG1(z, -1) := A156919(0, 0)*A094665 (0, 0) / (2*(1-z)^(3/2)): for m from 2 to nmax do GFREG1(z, 1-2*m) := simplify((-1)^(m+1)*2^(1-m)* sum(A094665(m-1, k2)*SF(k2), k2=1..m-1)) od: for m from 1 to mmax do g(m) := sort((numer ((-1)^(m+1)* GFREG1(z, 1-2*m))), ascending) od: for n from 1 to nmax do for m from 1 to n do a(n, m) := abs(coeff(g(n), z, m-1)) od: od: seq(seq(a(n, m), m=1..n), n=1..nmax);
    # Maple program edited by Johannes W. Meijer, Sep 25 2012

Formula

A different form of the recurrence relation is EG1[1-2*m,n] = (EG1[3-2*m,n]-EG1[3-2*m,n+1])* (n^2) for m = 2, 3, .., with EG1[ -1,n] = (1/n)*4^(-n)*((2*n)!/(n-1)!^2).

A036969 Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 14, 1, 1, 85, 147, 30, 1, 1, 341, 1408, 627, 55, 1, 1, 1365, 13013, 11440, 2002, 91, 1, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1, 1, 87381, 9668036, 53157079, 46587905
Offset: 1

Views

Author

Keywords

Comments

Or, triangle of central factorial numbers T(2n,2k) (in Riordan's notation).
Can be used to calculate the Bernoulli numbers via the formula B_2n = (1/2)*Sum_{k = 1..n} (-1)^(k+1)*(k-1)!*k!*T(n,k)/(2*k+1). E.g., n = 1: B_2 = (1/2)*1/3 = 1/6. n = 2: B_4 = (1/2)*(1/3 - 2/5) = -1/30. n = 3: B_6 = (1/2)*(1/3 - 2*5/5 + 2*6/7) = 1/42. - Philippe Deléham, Nov 13 2003
From Peter Bala, Sep 27 2012: (Start)
Generalized Stirling numbers of the second kind. T(n,k) is equal to the number of partitions of the set {1,1',2,2',...,n,n'} into k disjoint nonempty subsets V1,...,Vk such that, for each 1 <= j <= k, if i is the least integer such that either i or i' belongs to Vj then {i,i'} is a subset of Vj. An example is given below.
Thus T(n,k) may be thought of as a two-colored Stirling number of the second kind. See Matsumoto and Novak, who also give another combinatorial interpretation of these numbers. (End)

Examples

			Triangle begins:
  1;
  1,    1;
  1,    5,      1;
  1,   21,     14,      1;
  1,   85,    147,     30,     1;
  1,  341,   1408,    627,    55,    1;
  1, 1365,  13013,  11440,  2002,   91,   1;
  1, 5461, 118482, 196053, 61490, 5278, 140, 1;
  ...
T(3,2) = 5: The five set partitions into two sets are {1,1',2,2'}{3,3'}, {1,1',3,3'}{2,2'}, {1,1'}{2,2',3,3'}, {1,1',3}{2,2',3'} and {1,1',3'}{2,2',3}.
		

References

  • L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. [The triangle appears on page 2.]
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.

Crossrefs

Columns are A002450, A002451.
Diagonals are A000330 and A060493.
Transpose of A008957.
(0,0)-based version: A269945.
Cf. A008955, A008956, A156289, A135920 (row sums), A204579 (inverse), A000290.

Programs

  • Haskell
    a036969 n k = a036969_tabl !! (n-1) (k-1)
    a036969_row n = a036969_tabl !! (n-1)
    a036969_tabl = iterate f [1] where
       f row = zipWith (+)
         ([0] ++ row) (zipWith (*) (tail a000290_list) (row ++ [0]))
    -- Reinhard Zumkeller, Feb 18 2013
  • Maple
    A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end;
  • Mathematica
    t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!), {j, 1, k}]; Flatten[ Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Oct 11 2011 *)
    t1[n_, k_] := (1/(2 k)!) * Sum[Binomial[2 k, j]*(-1)^j*(k - j)^(2 n), {j, 0, 2 k}]; Column[Table[t1[n, k], {n, 1, 10}, {k, 1, n}]] (* Kolosov Petro ,Jul 26 2023 *)
  • PARI
    T(n,k)=if(1M. F. Hasler, Feb 03 2012
    
  • PARI
    T(n,k)=2*sum(j=1,k,(-1)^(k-j)*j^(2*n)/(k-j)!/(k+j)!)  \\ M. F. Hasler, Feb 03 2012
    
  • Sage
    def A036969(n,k) : return (2/factorial(2*k))*add((-1)^j*binomial(2*k,j)*(k-j)^(2*n) for j in (0..k))
    for n in (1..7) : print([A036969(n,k) for k in (1..n)]) # Peter Luschny, Feb 03 2012
    

Formula

T(n,k) = A156289(n,k)/A001147(k). - Peter Bala, Feb 21 2011
From Peter Bala, Oct 14 2011: (Start)
O.g.f.: Sum_{n >= 1} x^n*t^n/Product_{k = 1..n} (1 - k^2*t^2) = x*t + (x + x^2)*t^2 + (x + 5*x^2 + x^3)*t^3 + ....
Define polynomials x^[2*n] = Product_{k = 0..n-1} (x^2 - k^2). This triangle gives the coefficients in the expansion of the monomials x^(2*n) as a linear combination of x^[2*m], 1 <= m <= n. For example, row 4 gives x^8 = x^[2] + 21*x^[4] + 14*x^[6] + x^[8].
A008955 is a signed version of the inverse.
The n-th row sum = A135920(n). (End)
T(n,k) = (2/(2*k)!)*Sum_{j=0..k-1} (-1)^(j+k+1) * binomial(2*k,j+k+1) * (j+1)^(2*n). This formula is valid for n >= 0 and 0 <= k <= n. - Peter Luschny, Feb 03 2012
From Peter Bala, Sep 27 2012: (Start)
Let E(x) = cosh(sqrt(2*x)) = Sum_{n >= 0} x^n/((2*n)!/2^n). A generating function for the triangle is E(t*(E(x)-1)) = 1 + t*x + t*(1 + t)*x^2/6 + t*(1 + 5*t + t^2)*x^3/90 + ..., where the sequence of denominators [1, 1, 6, 90, ...] is given by (2*n)!/2^n. Cf. A008277 which has generating function exp(t*(exp(x)-1)). An e.g.f. is E(t*(E(x^2/2)-1)) = 1 + t*x^2/2! + t*(1 + t)*x^4/4! + t*(1 + 5*t + t^2)*x^6/6! + ....
Put c(n) := (2*n)!/2^n. The column k generating function is (1/c(k))*(E(x)-1)^k = Sum_{n >= k} T(n,k)*x^n/c(n). The inverse array is A204579.
The production array begins:
1, 1;
0, 4, 1;
0, 0, 9, 1;
0, 0, 0, 16, 1;
... (End)
x^n = Sum_{k=1..n} T(n,k)*Product_{i=0..k-1} (x-i^2), see Stanley link. - Michel Marcus, Nov 19 2014; corrected by Kolosov Petro, Jul 26 2023
From Kolosov Petro, Jul 26 2023: (Start)
T(n,k) = (1/(2*k)!) * Sum_{j=0..2k} binomial(2k, j)*(-1)^j*(k - j)^(2n).
T(n,k) = (1/(k*(2k-1)!)) * Sum_{j=0..k} (-1)^(k-j)*binomial(2k, k-j)*j^(2n). (End)

Extensions

More terms from Vladeta Jovovic, Apr 16 2000

A160474 The Zeta triangle.

Original entry on oeis.org

-1, 51, -10, -10594, 2961, -210, 356487, -115940, 12642, -420, -101141295, 35804857, -4751890, 254562, -4620, 48350824787, -18071509911, 2689347661, -180909586, 5471466, -60060
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

The coefficients of the ZS1 matrix are defined by ZS1[2*m-1,n] = (2^(2*m-1))*int(y^(2*m-1)/(sinh(y))^(2*n), y=0..infinity)/factorial(2*m-1) for m = 1, 2, 3, .. and n = 1, 2, 3, .. under the condition that n <= (m-1).
This definition leads to ZS1[2*m-1,n=1] = 2*zeta(2*m-1), for m = 2, 3, .. , and the recurrence relation ZS1[2*m-1,n]:=(1/(2*n-1))*((2/(n-1))*ZS1[2*m-3,n-1]-(2*n-2)*ZS1[2*m-1,n-1]). As usual zeta(m) is the Riemann zeta function. These two formulas enable us to determine the values of the ZS[2*m-1,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, ZS1[1,n=1] = 2*gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the ZS1 matrix, for m = 1, 2, 3, .., and n = 2, 3, 4 .. , can be generated with the GH(z;n) polynomials for which we found the following general expression GH(z;n) = (h(n)*CFN1(z;n)*GH(z;n=1) + ZETA(z;n))/p(n).
The CFN1(z;n) polynomials depend on the central factorial numbers A008955.
The ZETA(z;n) are the Zeta polynomials which lead to the Zeta triangle.
The zero patterns of the Zeta polynomials resemble a UFO. These patterns resemble those of the Eta, Beta and Lambda polynomials, see A160464, A160480 and A160487.
The first Maple algorithm generates the coefficients of the Zeta triangle. The second Maple algorithm generates the ZS1[2*m-1,n] coefficients for m= 0, -1, -2, .. .
The M(n) sequence, see the second Maple algorithm, leads to Gould's sequence A001316 and a sequence that resembles the denominators in Taylor series for tan(x), i.e., A156769(n).
Some of our results are conjectures based on numerical evidence.

Examples

			The first few rows of the triangle ZETA(n,m) with n=2,3,... and m=1,2,... are
  [ -1],
  [51, -10],
  [ -10594, 2961, -210],
  [356487, -115940, 12642, -420].
The first few ZETA(z;n) polynomials are
  ZETA(z;n=2) = -1,
  ZETA(z;n=3) = 51-10*z^2,
  ZETA(z;n=4) = -10594 + 2961*z^2 - 210*z^4.
The first few CFN1(z;n) polynomials are
  CFN1(z;n=2) = (z^2-1),
  CFN1(z;n=3) = (z^4 - 5*z^2 + 4),
  CFN1(z;n=4) = (z^6 - 14*z^4 + 49*z^2 - 36).
The first few generating functions GH(z;n) are
  GH(z;n=2) = (6*(z^2-1)*GH(z;n=1) + (-1)) / 9,
  GH(z;n=3) = (60*(z^4-5*z^2+4)*GH(z;n=1) + (51-10*z^2)) / 450,
  GH(z;n=4) = (1260*(z^6-14*z^4+49*z^2-36)*GH(z;n=1) + (-10594+2961*z^2-210*z^4))/99225.
		

Crossrefs

A160475 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A160477 equals the rows sums.
A160478 equals the p(n) sequence.
A160479 equals the ZL(n) sequence.
A001620 is the Euler-Mascheroni constant gamma.
The M(n-1) sequence equals A001316(n-1)/A156769(n) (n>=1).
The ZS1[ -1, n] and the Omega(n) coefficients lead to A002195 and A002196.
The CFN1(z, n) and the cfn1(n, k) lead to A008955.
Cf. The Eta, Beta and Lambda triangles A160464, A160480 and A160487.
Cf. A162446 (ZG1 matrix)

Programs

  • Maple
    nmax:=7; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do Zc(n) := (Omega(n)*2^(2*n-1))*2/((2*n+1)*(n)) end do: c(1) := denom(Zc(1)): for n from 2 to nmax do c(n) := lcm(c(n-1)*(n)*(2*n+1)/2, denom(Zc(n))); p(n) := c(n-1) end do: y(1):=Zc(1): for n from 1 to nmax-1 do y(n+1) := Zc(n+1) - ((2*n+2)/(2*n+3))*y(n) end do: for n from 1 to nmax do b(n) := 4^(-n)*(2*n+1)*n*denom(Omega(n)) end do: for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)*(1/6)* 4^n/(2*n+1)! end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: mmax := nmax: for n from 2 to nmax do ZETA(n, 1) := p(n)*y(n-1): ZETA(n, n) := 0 end do: for m from 2 to mmax do for n from m+1 to nmax do ZETA(n, m) := ZL(n)*(ZETA(n-1, m-1) - (n-1)^2* ZETA(n-1, m)) end do end do; seq(seq(ZETA(n,m), m=1..n-1), n=2..nmax);
    # End first program (program edited, Johannes W. Meijer, Sep 20 2012)
    nmax1 := 10; m := 1; ZS1row := 1-2*m; with(combinat): t1 := proc(n, k): sum((-1)^j * stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: mmax1 := nmax1: for m1 from 1 to mmax1 do M(m1-1) := 2^(2*m1-2)/((2*m1-1)!) end do: for m1 from 1 to mmax1 do ZS1[ -2*m1+1, 1] := 2*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do ZS1[-2*m1+1, n] := M(n-1)*sum((-1)^(k1+1)*t1(n-1, k1-1) * ZS1[2*k1-2*n-2*m1+1, 1], k1 = 1..n) od: od: seq(ZS1[1-2*m, n], n = 1..nmax1-m+1);
    # End second program (program edited, Johannes W. Meijer, Sep 20 2012)

Formula

We discovered a remarkable relation between the Zeta triangle coefficients ZETA(n,m) = ZL(n)*(ZETA(n-1,m-1)-(n-1)^2*ZETA(n-1,m)) for n = 3, 4, ... and m = 2, 3, .... See A160475 for ZETA(n,m=1) and furthermore ZETA(n,n) = 0 for n = 2, 3, ....
We observe that the ZL(n) = A160479(n) sequence also rules the Lambda triangle A160487.
The generating functions GH(z;n) of the coefficients in the matrix columns are defined by
GH(z;n) = sum(ZS1[2*m-1,n]*z^(2*m-2), m=1..infinity), with n = 1, 2, 3, .... This definition, and our choice of ZS1[1,1] = 2*gamma, leads to GH(z;n=1) = (-Psi(1-z)-Psi(1+z)) with Psi(z) the digamma-function. Furthermore we discovered that GH(z;n) = GH(z;n-1)*(2*z^2/((2*n-1)*(n-1))-(2*n-2)/(2*n-1))+2*ZS1[ -1,n-1]/((2*n-1)*(n-1)) for n = 2, 3 , ..., with ZS1[ -1,n] = 2^(2*n-1)*A002195(n)/A002196(n) for n = 1, 2, ....
We found the following general expression for the GH(z;n) polynomials, for n = 2, 3, ...:
GH(z;n) = (h(n)*CFN1(z;n)*GH(z;n=1) + ZETA(z;n))/p(n) with
h(n) = 6*A160476(n) and p(n) = A160478(n).

A161739 The RSEG2 triangle.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 0, 13, 10, 1, 0, -4, 30, 73, 20, 1, 0, 0, -14, 425, 273, 35, 1, 0, 120, -504, 1561, 3008, 798, 56, 1, 0, 0, 736, -2856, 25809, 14572, 1974, 84, 1, 0, -12096, 44640, -73520, 125580, 218769, 55060, 4326, 120, 1
Offset: 0

Views

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Comments

The EG2[2*m,n] matrix coefficients were introduced in A008955. We discovered that EG2[2m,n] = Sum_{k = 1..n} (-1)^(k+n)*t1(n-1,k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2 with t1(n,m) the central factorial numbers A008955 and eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function.
A different way to define these matrix coefficients is EG2[2*m,n] = (1/m)*Sum_{k = 0..m-1} ZETA(2*m-2*k, n-1)*EG2[2*k, n] with ZETA(2*m, n-1) = zeta(2*m) - Sum_{k = 1..n-1} (k)^(-2*m) and EG2[0, n] = 1, for m = 0, 1, 2, ..., and n = 1, 2, 3, ... .
We define the row sums of the EG2 matrix rs(2*m,p) = Sum_{n >= 1} (n^p)*EG2(2*m,n) for p = -2, -1, 0, 1, ... and m >= p+2. We discovered that rs(2*m,p=-2) = 2*eta(2*m+2) = (1 - 2^(1-(2*m+2)))*zeta(2*m+2). This formula is quite unlike the other rs(2*m,p) formulas, see the examples.
The series expansions of the row generators RGEG2(z,2*m) about z = 0 lead to the EG2[2*m,n] coefficients while the series expansions about z = 1 lead to the ZG1[2*m-1,n] coefficients, see the formulas.
The first Maple program gives the triangle coefficients. Adding the second program to the first one gives information about the row sums rs(2*m,p).
The a(n) formulas of the right hand columns are related to sequence A036283, see also A161740 and A161741.

Examples

			The first few expressions for the ZG1[2*m-1,p+1] coefficients are:
  ZG1[2*m-1, 1] = (zeta(2*m-1))/(1/2)
  ZG1[2*m-1, 2] = (zeta(2*m-3) - zeta(2*m-1))/1
  ZG1[2*m-1, 3] = (zeta(2*m-5) - 5*zeta(2*m-3) + 4*zeta(2*m-1))/6
  ZG1[2*m-1, 4] = (zeta(2*m-7) - 14*zeta(2*m-5) + 49*zeta(2*m-3) - 36*zeta(2*m-1))/72
The first few rs(2*m,p) are (m >= p+2)
  rs(2*m, p=0) = ZG1[2*m-1,1]
  rs(2*m, p=1) = ZG1[2*m-1,1] + ZG1[2*m-1,2]
  rs(2*m, p=2) = ZG1[2*m-1,1] + 3*ZG1[2*m-1,2] + 2*ZG1[2*m-1,3]
  rs(2*m, p=3) = ZG1[2*m-1,1] + 7*ZG1[2*m-1,2] + 12*ZG1[2*m-1,3] + 6*ZG1[2*m-1,4]
The first few rs(2*m,p) are (m >= p+2)
  rs(2*m, p=-1) = zeta(2*m+1)/(1/2)
  rs(2*m, p=0) = zeta(2*m-1)/(1/2)
  rs(2*m, p=1) = (zeta(2*m-1) + zeta(2*m-3))/1
  rs(2*m, p=2) = (zeta(2*m-1) + 4*zeta(2*m-3) + zeta(2*m-5))/3
  rs(2*m, p=3) = (0*zeta(2*m-1) + 13*zeta(2*m-3) + 10*zeta(2*m-5) + zeta(2*m-7))/12
The first few rows of the RSEG2 triangle are:
  [1]
  [0, 1]
  [0, 1, 1]
  [0, 1, 4, 1]
  [0, 0, 13, 10, 1]
  [0, -4, 30, 73, 20, 1]
		

Crossrefs

A000007, A129825, A161742 and A161743 are the first four left hand columns.
A000012, A000292, A107963, A161740 and A161741 are the first five right hand columns.
A010790 equals 2*r(n) and A054977 equals denom(r(n)).
A001710 equals numer(q(n)) and A141044 equals denom(q(n)).
A000142 equals the row sums.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.

Programs

  • Maple
    nmax:=10; for n from 0 to nmax do A008955(n, 0) := 1 end do: for n from 0 to nmax do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: for n from 1 to nmax do A028246(n, 1) := 1 od: for n from 1 to nmax do A028246(n, n) := (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n, m) := m*A028246(n-1, m) + (m-1)*A028246(n-1, m-1) od: od: for i from 0 to nmax-2 do s(i) := ((i+1)!/2)*sum(A028246(i+1, k1+1)*(sum((-1)^(j)*A008955(k1, j)*2*x^(2*nmax-(2*k1+1-2*j)), j=0..k1)/ (k1!*(k1+1)!)), k1=0..i) od: a(0,0) := 1: for n from 1 to nmax-1 do for m from 0 to n do a(n,m) := coeff(s(n-1), x, 2*nmax-1-2*m+2) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax-1); for n from 0 to nmax-1 do seq(a(n, m), m=0..n) od;
    m:=7: row := 2*m; rs(2*m, -2) := 2*eta(2*m+2); for p from -1 to m-2 do q(p+1) := (p+1)!/2 od: for p from -1 to m-2 do rs(2*m, p) := sum(a(p+1, k)*zeta(2*m+1-2*k), k=0..p+1)/q(p+1) od;

Formula

RGEG2(2*m,z) = Sum_{n >= 1} EG2[2*m,n]*z^(n-1) = Integral_{y = 0..oo}((2*y)^(2*m)/(2*m)!)* cosh(y)/(cosh(y)^2 - z)^(3/2) for m >= 0.
EG2[2*m,n] = Sum_{k = 1..n} (-1)^(k+n)* A008955(n-1, k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2.
ZG1[2*m-1,p+1] = Sum_{j = 0..p} (-1)^j*A008955(p, j)*zeta(2*m-(2*p+1-2*j))/ r(p) with r(p)= p!*(p+1)!/2 and p >= 0.
rs(2*m,p) = Sum_{k = 0..p} A028246(p+1,k+1)*ZG1[2*m-1,k+1] and p >= 0; p <= m-2.
rs(2*m,p) = Sum_{k = 0..p+1} A161739(p+1,k)*zeta(2*m+1-2*k)/q(p+1) with q(p+1) = (p+1)!/2 and p >= -1; p <= m-2.
From Peter Bala, Mar 19 2022: (Start)
It appears that the k-th row polynomial (with indexing starting at k = 1) is given by R(k,n^2) = (k-1)!*Sum_{i = 0..n} (-1)^(n-i)*(i^k)* binomial(n,i)*binomial(n+i,i)/(n+i) for n >= 1.
For example, for k = 6, Maple's SumTools:-Summation procedure gives 5!*Sum_{i = 0..n} (-1)^(n-i)*(i^6)*binomial(n,i)*binomial(n+i,i)/(n+i) = -4*n^2 + 30*n^4 + 73*n^6 + 20*n^8 + n^10 = R(6,n^2). (End)

Extensions

Minor error corrected and edited by Johannes W. Meijer, Sep 22 2012

A008958 Triangle of central factorial numbers 4^k T(2n+1, 2n+1-2k).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 35, 91, 1, 1, 84, 966, 820, 1, 1, 165, 5082, 24970, 7381, 1, 1, 286, 18447, 273988, 631631, 66430, 1, 1, 455, 53053, 1768195, 14057043, 15857205, 597871, 1, 1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1
Offset: 0

Views

Author

Keywords

Examples

			From _Wesley Transue_, Jan 21 2012: (Start)
Triangle begins:
  1;
  1,   1;
  1,  10,      1;
  1,  35,     91,       1;
  1,  84,    966,     820,         1;
  1, 165,   5082,   24970,      7381,         1;
  1, 286,  18447,  273988,    631631,     66430,         1;
  1, 455,  53053, 1768195,  14057043,  15857205,    597871,       1;
  1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1;
(End)
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Columns include A000447. Right-hand columns include A002452, A002453.

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^(q+1) 4^(p-n) (2p+2q-2n-1)^(2n+1)/((2n+1-2p-q)! q!), {q, 0, n-p}], {n, 0, 8}, {p, 0, n}]] (* Wesley Transue, Jan 21 2012 *)

Formula

G.f. of i-th right-hand column is x/Product_{j=1..i+1} (1 - (2j-1)^2*x).

Extensions

More terms from Vladeta Jovovic, Apr 16 2000

A129825 a(n) = n!*Bernoulli(n-1), n > 2; a(0)=0, a(1)=1, a(2)=1.

Original entry on oeis.org

0, 1, 1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, 0, 160078872315904478576640000, 0, -1342964491649083924630732800000, 0, 15522270327163593186886877184000000, 0
Offset: 0

Views

Author

Paul Curtz, Jun 03 2007

Keywords

Comments

Define "conjugated" Bernoulli numbers G(n) via G(0)=0, G(1)=B(0)=1, G(2)=-B(1)=1/2, G(n+1)=B(n), where B(n)=A027641(n)/A027642(n).
The sequence is then defined by a(n) = n!*G(n).
The first differences are 1, 0, 0, -1, -4, 4, 120, -120, -12096, ...
The 2nd differences are -1, 0, -1, -3, 8, 116, -240, -11976, 24192, 3011904, ...

Crossrefs

Equals second left hand column of A161739 (RSEG2 triangle).
Other left hand columns are A161742 and A161743.
Cf. A094310 [T(n,k) = n!/k], A008277 [S2(n,k); Stirling numbers of the second kind], A028246 [Worpitzky's triangle] and A008955 [CFN triangle].

Programs

  • Magma
    [n le 2 select Floor((n+1)/2) else Factorial(n)*Bernoulli(n-1): n in [0..40]]; // G. C. Greubel, Apr 26 2024
    
  • Maple
    A129825 := proc(n) if n <= 1 then n; elif n = 2 then 1; else n!*bernoulli(n-1) ; fi; end: # R. J. Mathar, May 21 2009
  • Mathematica
    a[n_] := n!*BernoulliB[n-1]; a[0]=0; a[2]=1; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Mar 04 2013 *)
  • SageMath
    [(n+1)//2 if n <3 else factorial(n)*bernoulli(n-1) for n in range(41)] # G. C. Greubel, Apr 26 2024

Formula

From Johannes W. Meijer, Jun 18 2009: (Start)
a(n) = Sum_{k=1..n} (-1)^(k+1)*(n!/k)*S2(n, k)*(k-1)!.
a(n) = Sum_{k=0..n-1} ((-1)^k/(k!*(k+1)!))*n!*A028246(n, k+1) *A008955(k, k). (End)
a(n) = A129814(n-1) for n > 2. - Georg Fischer, Oct 07 2018

Extensions

Edited by R. J. Mathar, May 21 2009

A002195 Numerators of coefficients for numerical integration.

Original entry on oeis.org

1, -1, 11, -191, 2497, -14797, 92427157, -36740617, 61430943169, -23133945892303, 16399688681447, -3098811853954483, 312017413700271173731, -69213549869569446541, 53903636903066465730877, -522273861988577772410712439, 644962185719868974672135609261
Offset: 0

Views

Author

Keywords

Comments

The numerators of these coefficients for numerical integration are a combination of the Bernoulli numbers B{2k}, the central factorial numbers A008955(n, k) and the factor (2n+1)!. - Johannes W. Meijer, Jan 27 2009
These numbers are the numerators of the constant term in the Laurent expansion of the cosech^(2n)(x)/2^(2n) function. - Istvan Mezo, Apr 21 2023

Examples

			a(1) = -1 because (1/3)*int(t*(t^2-1^2),t=0..1) = -1/12.
a(3) = numer((-((1/6)/2)*(4) +((-1/30)/4)*(5) - ((1/42)/6)*(1))/5!) so a(3) = -191. - _Johannes W. Meijer_, Jan 27 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002196.
See A000367, A006954, A008955 and A009445 for underlying sequences.

Programs

  • Maple
    a:=n->numer((2/(2*n+1)!)*int(t*product(t^2-k^2,k=1..n),t=0..1)): seq(a(n),n=0..16); # Emeric Deutsch, Feb 20 2005
    nmax:=16: with(combinat): A008955 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))* A008955(n-1,n-k1), k1=1..n)/(2*n-1)! end do: a := n-> numer(Omega(n)): seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 27 2009, Revised Sep 21 2012
  • Mathematica
    a[0] = 1; a[n_] := Sum[Binomial[2*n+k-1, 2*n-1]*Sum[Binomial[k, j]*Sum[(2*i-j)^(2*n+j)*Binomial[j, i]*(-1)^(-i), {i, 0, j/2}]/(2^j*(2*n+j)!), {j, 1, k}], {k, 1, 2*n}]; Table[a[n] // Numerator, {n, 0, 16}] (* Jean-François Alcover, Apr 18 2014, after Vladimir Kruchinin *)
    a[n_] := Numerator[SeriesCoefficient[1/2^(2*n)*Csch[x]^(2*n), {x, 0, 0}]] (* Istvan Mezo, Apr 21 2023 *)
  • Maxima
    a(n):=num(sum(binomial(2*n+k-1,2*n-1)*sum((binomial(k,j)*sum((2*i-j)^(2*n+j)*binomial(j,i)*(-1)^(-i),i,0,j/2))/(2^j*(2*n+j)!),j,1,k),k,1,2*n)); /* Vladimir Kruchinin, Feb 04 2013 */

Formula

a(n) = numerator of (2/(2*n+1)!)*Integral_{t=0..1} t*Product_{k=1..n} t^2-k^2. - Emeric Deutsch, Jan 25 2005
a(0) = 1; a(n) = numerator [sum((-1)^(k+n+1) * (B{2k}/(2*k)) * A008955(n-1, n-k), k = 1..n)/(2*n-1)!] for n >= 1. - Johannes W. Meijer, Jan 27 2009
a(n) = numerator(sum(k=1..2*n, binomial(2*n+k-1,2*n-1)*sum(j=1..k, (binomial(k,j)*sum(i=0,j/2, (2*i-j)^(2*n+j)*binomial(j,i)*(-1)^(-i)))/(2^j*(2*n+j)!)))), n>0, a(0)=1. - Vladimir Kruchinin, Feb 04 2013

Extensions

More terms from Emeric Deutsch, Jan 25 2005
Edited by Johannes W. Meijer, Sep 21 2012

A002196 Denominators of coefficients for numerical integration.

Original entry on oeis.org

1, 12, 720, 60480, 3628800, 95800320, 2615348736000, 4483454976000, 32011868528640000, 51090942171709440000, 152579284313702400000, 120866571766215475200000, 50814724101952310083584000000
Offset: 0

Views

Author

Keywords

Comments

The denominators of these coefficients for numerical integration are a combination of the Bernoulli numbers B{2k}, the central factorial numbers A008955(n, k) and the factor (2n+1)!. - Johannes W. Meijer, Jan 27 2009
These numbers are the denominators of the constant term in the Laurent expansion of the even powers of the hyperbolic cosecant cosech^(2n)(x)/2^(2n) function. - Istvan Mezo, Apr 21 2023

Examples

			a(1) = 12 because (1/3)*int(t*(t^2-1^2), t=0..1) = -1/12.
a(3) = denom((-((1/6)/2)*(4) +((-1/30)/4)*(5) - ((1/42)/6)*(1))/5!) so a(3) = 60480. - _Johannes W. Meijer_, Jan 27 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002195.
See A000367, A006954, A008955 and A009445 for underlying sequences.
Factor of ZS1[ -1,n] matrix coefficients in A160474.

Programs

  • Maple
    a := n->denom((2/(2*n+1)!)*int(t*product(t^2-k^2,k=1..n),t=0..1)): seq(a(n), n=0..14); # Emeric Deutsch, Feb 20 2005
    nmax:=12: with(combinat): A008955 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1)) * A008955(n-1,n-k1), k1=1..n)/(2*n-1)! end do: a := n-> denom(Omega(n)): seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 27 2009, Revised Sep 21 2012
  • Mathematica
    a[0] = 1; a[n_] := Sum[Binomial[2*n+k-1, 2*n-1]*Sum[Binomial[k, j]*Sum[(2*i-j)^(2*n+j)*Binomial[j, i]*(-1)^(-i), {i, 0, j/2}]/(2^j*(2*n+j)!), {j, 1, k}], {k, 1, 2*n}]/2^(2*n-1); Table[a[n] // Denominator, {n, 0, 12}] (* Jean-François Alcover, Apr 18 2014, after Vladimir Kruchinin *)
    a[n_] := Denominator[SeriesCoefficient[1/2^(2*n)*Csch[x]^(2*n), {x, 0, 0}]] (* Istvan Mezo, Apr 21 2023 *)

Formula

a(n) = denominator of (2/(2*n+1)!)*int(t*product(t^2-k^2, k=1..n), t=0..1). - Emeric Deutsch, Jan 25 2005
a(0) = 1; a(n) = denominator [sum((-1)^(k+n+1) * (B{2k}/(2*k)) * A008955(n-1, n-k), k = 1..n) / (2*n-1)!] for n >= 1. - Johannes W. Meijer, Jan 27 2009

Extensions

More terms from Emeric Deutsch, Jan 25 2005
Edited by Johannes W. Meijer, Sep 21 2012

A160476 The first right hand column of the Zeta and Lambda triangles.

Original entry on oeis.org

1, 10, 210, 420, 4620, 60060, 60060, 2042040, 116396280, 581981400, 13385572200, 13385572200, 13385572200, 388181593800, 12033629407800, 24067258815600, 24067258815600, 890488576177200, 890488576177200
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

This intriguing sequence makes its appearance in the Zeta and Lambda triangles.
The first Maple algorithm is related to the Zeta triangle and the second to the Lambda triangle. Both generate the sequence of the first right hand column of these triangles.

Crossrefs

The Zeta and Lambda triangles are A160474 and A160487.
Appears in A162446 (ZG1 matrix) and A162448 (LG1 matrix) [Johannes W. Meijer, Jul 06 2009]

Programs

  • Maple
    nmax := 20; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 2 to nmax do Zc(n-1) := d(n-1)*2/((2*n-1)*(n-1)) end do: c(1) := denom(Zc(1)): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, denom(Zc(n+1))): p(n+1) := c(n) end do: for n from 2 to nmax do a1(n) := p(n)*2^(2*n-3)/(3*factorial(2*n-1)) od: seq(a1(n), n=2..nmax);
    # End first program (program edited, Johannes W. Meijer, Sep 20 2012)
    nmax1 := nmax: for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax1 do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1)/ (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax1 do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax1 do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax1 do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax1 do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax1 do a2(n) := p(n)/(6*factorial(2*n-2)) od: seq(a2(n), n=2..nmax1);
    # End second program (program edited, Johannes W. Meijer, Sep 20 2012)

Formula

a(n) = A160490(n)/(6*(2*n-2)!) for n = 2, 3, .. .
a(n) = A160478(n)*M(n) with M(n) = 2^(2*n-3)/(3*(2*n-1)!) for n=2, 3, .. .
M(n) = A048896(n-2)/(9*M1(n-1)) with M1(n) = (2*n+1)*A000265(n)*M1(n-1) for n = 2, 3, .. , and M1(1) = 1.
a(n+1)/a(n) = A160479(n+1) [Johannes W. Meijer, Oct 07 2009]
Previous Showing 11-20 of 37 results. Next