A160464
The Eta triangle.
Original entry on oeis.org
-1, -11, 2, -114, 29, -2, -3963, 1156, -122, 4, -104745, 32863, -4206, 222, -4, -3926745, 1287813, -184279, 12198, -366, 4, -198491580, 67029582, -10317484, 781981, -30132, 562, -4
Offset: 2
The first few rows of the triangle ETA(n,m) with n=2,3,.. and m=1,2,... are
[ -1]
[ -11, 2]
[ -114, 29, -2]
[ -3963, 1156, -122, 4].
The first few ETA(z,n) polynomials are
ETA(z,n=2) = -1;
ETA(z,n=3) = -11+2*z^2;
ETA(z,n=4) = -114 + 29*z^2 - 2*z^4.
The first few CFN1(z,n) polynomials are
CFN1(z,n=2) = (z^2-1);
CFN1(z,n=3) = (z^4 - 5*z^2 + 4);
CFN1(z,n=4) = (z^6 - 14*z^4 + 49*z^2 - 36).
The first few generating functions GF(z;n) are:
GF(z;n=2) = ((-1)*2*(z^2 - 1)*GF(z;n=1) + (- 1))/3;
GF(z;n=3) = (4*(z^4 - 5*z^2+4) *GF(z;n=1) + (-11 + 2*z^2))/30;
GF(z;n=4) = ((-1)*4*(z^6 - 14*z^4 + 49*z^2 - 36)*GF(z;n=1) + (-114 + 29*z^2 - 2*z^4))/315.
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- Johannes W. Meijer, The zeros of the Eta, Zeta, Beta and Lambda polynomials, jpg and pdf, Mar 03 2013.
- J. W. Meijer and N.H.G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
- Eric. W. Weisstein, Dirichlet Eta Function, Wolfram MathWorld.
The r(n) sequence equals
A062383 (n>=1).
The p(n) sequence equals
A160473(n) (n>=2).
The GCS(n) sequence equals the Geometric Connell sequence
A049039(n).
The first right hand column equals
A053644 (n>=1).
The first left hand column equals
A160465.
The CFN1(z, n) and the cfn1(n, k) lead to
A008955.
-
nmax:=8; c(2 ):= -1/3: for n from 3 to nmax do c(n) := (2*n-2)*c(n-1)/(2*n-1)-1/((n-1)*(2*n-1)) end do: for n from 2 to nmax do GCS(n-1) := ln(1/(2^(-(2*(n-1)-1-floor(ln(n-1)/ ln(2))))))/ln(2); p(n) := 2^(-GCS(n-1))*(2*n-1)!; ETA(n, 1) := p(n)*c(n); ETA(n, n) := 0 end do: mmax:=nmax: for m from 2 to mmax do for n from m+1 to nmax do q(n) := (1+(-1)^(n-3)*(floor(ln(n-1)/ln(2)) - floor(ln(n-2)/ln(2)))): ETA(n, m) := q(n)*((-1)*ETA(n-1, m-1)+(n-1)^2*ETA(n-1, m)) end do end do: seq(seq(ETA(n,m), m=1..n-1), n=2..nmax);
# End first program.
nmax1:=20; m:=1; ES1row:=1-2*m; with (combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: mmax1:=nmax1: for m1 from 1 to mmax1 do M(m1-1) := 2^(2*m1-2)/((2*m1-1)!); ES1[-2*m1+1,1] := 2*(1-2^(1-(1-2*m1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do ES1[1-2*m1, n] := (-1)^(n-1)*M(n-1)*sum((-1)^(k+1)*cfn1(n-1,k-1)* ES1[2*k-2*n-2*m1+1, 1], k=1..n) od: od: seq(ES1[1-2*m, n], n=1..nmax1-m+1);
# End second program.
A162005
The EG1 triangle.
Original entry on oeis.org
1, 2, 1, 16, 28, 1, 272, 1032, 270, 1, 7936, 52736, 36096, 2456, 1, 353792, 3646208, 4766048, 1035088, 22138, 1, 22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1, 1903757312, 38188155904, 120536980224, 93989648000
Offset: 1
The first few rows of the EG1 triangle are :
[1]
[2, 1]
[16, 28, 1]
[272, 1032, 270, 1]
The first few RG(z,1-2*m) polynomials are:
RG(z,-1) = 1
RG(z,-3) = 2+z
RG(z,-5) = 16+28*z+z^2
RG(z,-7) = 272+1032*z+270*z^2+z^3
The first few GFREG1(z,1-2*m) are:
GFREG1(z,-1) = (1)*(1)/(2*(1-z)^(3/2))
GFREG1(z,-3) = (-1)*(2+z)/(2^3*(1-z)^(5/2))
GFREG1(z,-5) = (1)*(16+28*z+z^2)/( 2^5*(1-z)^(7/2))
GFREG1(z,-7) = (-1)*(272+1032*z+270*z^2+z^3)/(2^7*(1-z)^(9/2))
The first few REG1(1-2*m,n) are:
REG1(-1,n) = (1/1)*(1)*(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-3,n) = (-1/2)*(n) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-5,n) = (1/4) *(n+3*n^2) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-7,n) = (-1/8)*(4*n+15*n^2+15*n^3) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
The first few ECGP(1-2*m,n) polynomials are:
ECGP(-1,n) = 1
ECGP(-3,n) = n
ECGP(-5,n) = n+3*n^2
ECGP(-7,n) = 4*n+15*n^2+15*n^3
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
-
nmax:=7; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1)*T1(i-1, x+1)-2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1)*A156919(n-1, m-1) end do end do: for n from 0 to nmax do SF(n) := sum(A156919(n, k1)*z^k1, k1=0..n)/(2^(n+1)*(1-z)^((2*n+3)/2)) od: GFREG1(z, -1) := A156919(0, 0)*A094665 (0, 0) / (2*(1-z)^(3/2)): for m from 2 to nmax do GFREG1(z, 1-2*m) := simplify((-1)^(m+1)*2^(1-m)* sum(A094665(m-1, k2)*SF(k2), k2=1..m-1)) od: for m from 1 to mmax do g(m) := sort((numer ((-1)^(m+1)* GFREG1(z, 1-2*m))), ascending) od: for n from 1 to nmax do for m from 1 to n do a(n, m) := abs(coeff(g(n), z, m-1)) od: od: seq(seq(a(n, m), m=1..n), n=1..nmax);
# Maple program edited by Johannes W. Meijer, Sep 25 2012
A036969
Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 14, 1, 1, 85, 147, 30, 1, 1, 341, 1408, 627, 55, 1, 1, 1365, 13013, 11440, 2002, 91, 1, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1, 1, 87381, 9668036, 53157079, 46587905
Offset: 1
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 21, 14, 1;
1, 85, 147, 30, 1;
1, 341, 1408, 627, 55, 1;
1, 1365, 13013, 11440, 2002, 91, 1;
1, 5461, 118482, 196053, 61490, 5278, 140, 1;
...
T(3,2) = 5: The five set partitions into two sets are {1,1',2,2'}{3,3'}, {1,1',3,3'}{2,2'}, {1,1'}{2,2',3,3'}, {1,1',3}{2,2',3'} and {1,1',3'}{2,2',3}.
- L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. [The triangle appears on page 2.]
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.
- Vincenzo Librandi, Rows n = 1..100 of triangle, flattened
- Thomas Browning, Counting Parabolic Double Cosets in Symmetric Groups, arXiv:2010.13256 [math.CO], 2020.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt. Central factorial numbers; their main properties and some applications, Num. Funct. Anal. Optim., 10 (1989) 419-488.
- José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 2.
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
- Qi Fang, Ya-Nan Feng, and Shi-Mei Ma, Alternating runs of permutations and the central factorial numbers, arXiv:2202.13978 [math.CO], 2022.
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265. - From _N. J. A. Sloane_, Jan 02 2013
- Petro Kolosov, Polynomial identities involving central factorial numbers, GitHub, 2024. See p. 6.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- S. Matsumoto and J. Novak, Jucys-Murphy Elements and Unitary Matrix Integrals arXiv.0905.1992 [math.CO], 2009-2012.
- B. K. Miceli, Two q-Analogues of Poly-Stirling Numbers, J. Integer Seq., 14 (2011), 11.9.6.
- John Riordan, Letter, Apr 28 1976.
- John Riordan, Letter, Jul 06 1978
- Richard P. Stanley, Hook Lengths and Contents.
-
a036969 n k = a036969_tabl !! (n-1) (k-1)
a036969_row n = a036969_tabl !! (n-1)
a036969_tabl = iterate f [1] where
f row = zipWith (+)
([0] ++ row) (zipWith (*) (tail a000290_list) (row ++ [0]))
-- Reinhard Zumkeller, Feb 18 2013
-
A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end;
-
t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!), {j, 1, k}]; Flatten[ Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Oct 11 2011 *)
t1[n_, k_] := (1/(2 k)!) * Sum[Binomial[2 k, j]*(-1)^j*(k - j)^(2 n), {j, 0, 2 k}]; Column[Table[t1[n, k], {n, 1, 10}, {k, 1, n}]] (* Kolosov Petro ,Jul 26 2023 *)
-
T(n,k)=if(1M. F. Hasler, Feb 03 2012
-
T(n,k)=2*sum(j=1,k,(-1)^(k-j)*j^(2*n)/(k-j)!/(k+j)!) \\ M. F. Hasler, Feb 03 2012
-
def A036969(n,k) : return (2/factorial(2*k))*add((-1)^j*binomial(2*k,j)*(k-j)^(2*n) for j in (0..k))
for n in (1..7) : print([A036969(n,k) for k in (1..n)]) # Peter Luschny, Feb 03 2012
A160474
The Zeta triangle.
Original entry on oeis.org
-1, 51, -10, -10594, 2961, -210, 356487, -115940, 12642, -420, -101141295, 35804857, -4751890, 254562, -4620, 48350824787, -18071509911, 2689347661, -180909586, 5471466, -60060
Offset: 2
The first few rows of the triangle ZETA(n,m) with n=2,3,... and m=1,2,... are
[ -1],
[51, -10],
[ -10594, 2961, -210],
[356487, -115940, 12642, -420].
The first few ZETA(z;n) polynomials are
ZETA(z;n=2) = -1,
ZETA(z;n=3) = 51-10*z^2,
ZETA(z;n=4) = -10594 + 2961*z^2 - 210*z^4.
The first few CFN1(z;n) polynomials are
CFN1(z;n=2) = (z^2-1),
CFN1(z;n=3) = (z^4 - 5*z^2 + 4),
CFN1(z;n=4) = (z^6 - 14*z^4 + 49*z^2 - 36).
The first few generating functions GH(z;n) are
GH(z;n=2) = (6*(z^2-1)*GH(z;n=1) + (-1)) / 9,
GH(z;n=3) = (60*(z^4-5*z^2+4)*GH(z;n=1) + (51-10*z^2)) / 450,
GH(z;n=4) = (1260*(z^6-14*z^4+49*z^2-36)*GH(z;n=1) + (-10594+2961*z^2-210*z^4))/99225.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- Johannes W. Meijer, The zeros of the Eta, Zeta, Beta and Lambda polynomials, jpg and pdf, Mar 03 2013.
- Johannes W. Meijer and N.H.G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
A160475 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A001620 is the Euler-Mascheroni constant gamma.
The ZS1[ -1, n] and the Omega(n) coefficients lead to
A002195 and
A002196.
The CFN1(z, n) and the cfn1(n, k) lead to
A008955.
-
nmax:=7; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do Zc(n) := (Omega(n)*2^(2*n-1))*2/((2*n+1)*(n)) end do: c(1) := denom(Zc(1)): for n from 2 to nmax do c(n) := lcm(c(n-1)*(n)*(2*n+1)/2, denom(Zc(n))); p(n) := c(n-1) end do: y(1):=Zc(1): for n from 1 to nmax-1 do y(n+1) := Zc(n+1) - ((2*n+2)/(2*n+3))*y(n) end do: for n from 1 to nmax do b(n) := 4^(-n)*(2*n+1)*n*denom(Omega(n)) end do: for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)*(1/6)* 4^n/(2*n+1)! end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: mmax := nmax: for n from 2 to nmax do ZETA(n, 1) := p(n)*y(n-1): ZETA(n, n) := 0 end do: for m from 2 to mmax do for n from m+1 to nmax do ZETA(n, m) := ZL(n)*(ZETA(n-1, m-1) - (n-1)^2* ZETA(n-1, m)) end do end do; seq(seq(ZETA(n,m), m=1..n-1), n=2..nmax);
# End first program (program edited, Johannes W. Meijer, Sep 20 2012)
nmax1 := 10; m := 1; ZS1row := 1-2*m; with(combinat): t1 := proc(n, k): sum((-1)^j * stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: mmax1 := nmax1: for m1 from 1 to mmax1 do M(m1-1) := 2^(2*m1-2)/((2*m1-1)!) end do: for m1 from 1 to mmax1 do ZS1[ -2*m1+1, 1] := 2*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do ZS1[-2*m1+1, n] := M(n-1)*sum((-1)^(k1+1)*t1(n-1, k1-1) * ZS1[2*k1-2*n-2*m1+1, 1], k1 = 1..n) od: od: seq(ZS1[1-2*m, n], n = 1..nmax1-m+1);
# End second program (program edited, Johannes W. Meijer, Sep 20 2012)
A161739
The RSEG2 triangle.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 0, 13, 10, 1, 0, -4, 30, 73, 20, 1, 0, 0, -14, 425, 273, 35, 1, 0, 120, -504, 1561, 3008, 798, 56, 1, 0, 0, 736, -2856, 25809, 14572, 1974, 84, 1, 0, -12096, 44640, -73520, 125580, 218769, 55060, 4326, 120, 1
Offset: 0
The first few expressions for the ZG1[2*m-1,p+1] coefficients are:
ZG1[2*m-1, 1] = (zeta(2*m-1))/(1/2)
ZG1[2*m-1, 2] = (zeta(2*m-3) - zeta(2*m-1))/1
ZG1[2*m-1, 3] = (zeta(2*m-5) - 5*zeta(2*m-3) + 4*zeta(2*m-1))/6
ZG1[2*m-1, 4] = (zeta(2*m-7) - 14*zeta(2*m-5) + 49*zeta(2*m-3) - 36*zeta(2*m-1))/72
The first few rs(2*m,p) are (m >= p+2)
rs(2*m, p=0) = ZG1[2*m-1,1]
rs(2*m, p=1) = ZG1[2*m-1,1] + ZG1[2*m-1,2]
rs(2*m, p=2) = ZG1[2*m-1,1] + 3*ZG1[2*m-1,2] + 2*ZG1[2*m-1,3]
rs(2*m, p=3) = ZG1[2*m-1,1] + 7*ZG1[2*m-1,2] + 12*ZG1[2*m-1,3] + 6*ZG1[2*m-1,4]
The first few rs(2*m,p) are (m >= p+2)
rs(2*m, p=-1) = zeta(2*m+1)/(1/2)
rs(2*m, p=0) = zeta(2*m-1)/(1/2)
rs(2*m, p=1) = (zeta(2*m-1) + zeta(2*m-3))/1
rs(2*m, p=2) = (zeta(2*m-1) + 4*zeta(2*m-3) + zeta(2*m-5))/3
rs(2*m, p=3) = (0*zeta(2*m-1) + 13*zeta(2*m-3) + 10*zeta(2*m-5) + zeta(2*m-7))/12
The first few rows of the RSEG2 triangle are:
[1]
[0, 1]
[0, 1, 1]
[0, 1, 4, 1]
[0, 0, 13, 10, 1]
[0, -4, 30, 73, 20, 1]
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- J. W. Meijer and N.H.G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
A008955 is a central factorial number triangle.
-
nmax:=10; for n from 0 to nmax do A008955(n, 0) := 1 end do: for n from 0 to nmax do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: for n from 1 to nmax do A028246(n, 1) := 1 od: for n from 1 to nmax do A028246(n, n) := (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n, m) := m*A028246(n-1, m) + (m-1)*A028246(n-1, m-1) od: od: for i from 0 to nmax-2 do s(i) := ((i+1)!/2)*sum(A028246(i+1, k1+1)*(sum((-1)^(j)*A008955(k1, j)*2*x^(2*nmax-(2*k1+1-2*j)), j=0..k1)/ (k1!*(k1+1)!)), k1=0..i) od: a(0,0) := 1: for n from 1 to nmax-1 do for m from 0 to n do a(n,m) := coeff(s(n-1), x, 2*nmax-1-2*m+2) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax-1); for n from 0 to nmax-1 do seq(a(n, m), m=0..n) od;
m:=7: row := 2*m; rs(2*m, -2) := 2*eta(2*m+2); for p from -1 to m-2 do q(p+1) := (p+1)!/2 od: for p from -1 to m-2 do rs(2*m, p) := sum(a(p+1, k)*zeta(2*m+1-2*k), k=0..p+1)/q(p+1) od;
A008958
Triangle of central factorial numbers 4^k T(2n+1, 2n+1-2k).
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 35, 91, 1, 1, 84, 966, 820, 1, 1, 165, 5082, 24970, 7381, 1, 1, 286, 18447, 273988, 631631, 66430, 1, 1, 455, 53053, 1768195, 14057043, 15857205, 597871, 1, 1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1
Offset: 0
From _Wesley Transue_, Jan 21 2012: (Start)
Triangle begins:
1;
1, 1;
1, 10, 1;
1, 35, 91, 1;
1, 84, 966, 820, 1;
1, 165, 5082, 24970, 7381, 1;
1, 286, 18447, 273988, 631631, 66430, 1;
1, 455, 53053, 1768195, 14057043, 15857205, 597871, 1;
1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1;
(End)
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- Robert James Purser, Mobius Net Cubed-Sphere Gnomonic Grids, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Protection, 2018.
-
Flatten[Table[Sum[(-1)^(q+1) 4^(p-n) (2p+2q-2n-1)^(2n+1)/((2n+1-2p-q)! q!), {q, 0, n-p}], {n, 0, 8}, {p, 0, n}]] (* Wesley Transue, Jan 21 2012 *)
A129825
a(n) = n!*Bernoulli(n-1), n > 2; a(0)=0, a(1)=1, a(2)=1.
Original entry on oeis.org
0, 1, 1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, 0, 160078872315904478576640000, 0, -1342964491649083924630732800000, 0, 15522270327163593186886877184000000, 0
Offset: 0
Equals second left hand column of
A161739 (RSEG2 triangle).
Cf.
A094310 [T(n,k) = n!/k],
A008277 [S2(n,k); Stirling numbers of the second kind],
A028246 [Worpitzky's triangle] and
A008955 [CFN triangle].
-
[n le 2 select Floor((n+1)/2) else Factorial(n)*Bernoulli(n-1): n in [0..40]]; // G. C. Greubel, Apr 26 2024
-
A129825 := proc(n) if n <= 1 then n; elif n = 2 then 1; else n!*bernoulli(n-1) ; fi; end: # R. J. Mathar, May 21 2009
-
a[n_] := n!*BernoulliB[n-1]; a[0]=0; a[2]=1; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Mar 04 2013 *)
-
[(n+1)//2 if n <3 else factorial(n)*bernoulli(n-1) for n in range(41)] # G. C. Greubel, Apr 26 2024
A002195
Numerators of coefficients for numerical integration.
Original entry on oeis.org
1, -1, 11, -191, 2497, -14797, 92427157, -36740617, 61430943169, -23133945892303, 16399688681447, -3098811853954483, 312017413700271173731, -69213549869569446541, 53903636903066465730877, -522273861988577772410712439, 644962185719868974672135609261
Offset: 0
a(1) = -1 because (1/3)*int(t*(t^2-1^2),t=0..1) = -1/12.
a(3) = numer((-((1/6)/2)*(4) +((-1/30)/4)*(5) - ((1/42)/6)*(1))/5!) so a(3) = -191. - _Johannes W. Meijer_, Jan 27 2009
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Iaroslav V. Blagouchine, Three notes on Ser's and Hasse's representation for the zeta-functions, Integers (2018) 18A, Article #A3.
- H. E. Salzer, Coefficients for numerical integration with central differences, Phil. Mag., 35 (1944), 262-264. [Annotated scanned copy]
- H. E. Salzer, XXXII. Coefficients for numerical integration with central differences, Phil. Mag., 35 (1944), 262-264.
- H. E. Salzer, Coefficients for repeated integration with central differences, Journal of Mathematics and Physics, 28 (1949), 54-61.
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 545.
-
a:=n->numer((2/(2*n+1)!)*int(t*product(t^2-k^2,k=1..n),t=0..1)): seq(a(n),n=0..16); # Emeric Deutsch, Feb 20 2005
nmax:=16: with(combinat): A008955 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))* A008955(n-1,n-k1), k1=1..n)/(2*n-1)! end do: a := n-> numer(Omega(n)): seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 27 2009, Revised Sep 21 2012
-
a[0] = 1; a[n_] := Sum[Binomial[2*n+k-1, 2*n-1]*Sum[Binomial[k, j]*Sum[(2*i-j)^(2*n+j)*Binomial[j, i]*(-1)^(-i), {i, 0, j/2}]/(2^j*(2*n+j)!), {j, 1, k}], {k, 1, 2*n}]; Table[a[n] // Numerator, {n, 0, 16}] (* Jean-François Alcover, Apr 18 2014, after Vladimir Kruchinin *)
a[n_] := Numerator[SeriesCoefficient[1/2^(2*n)*Csch[x]^(2*n), {x, 0, 0}]] (* Istvan Mezo, Apr 21 2023 *)
-
a(n):=num(sum(binomial(2*n+k-1,2*n-1)*sum((binomial(k,j)*sum((2*i-j)^(2*n+j)*binomial(j,i)*(-1)^(-i),i,0,j/2))/(2^j*(2*n+j)!),j,1,k),k,1,2*n)); /* Vladimir Kruchinin, Feb 04 2013 */
A002196
Denominators of coefficients for numerical integration.
Original entry on oeis.org
1, 12, 720, 60480, 3628800, 95800320, 2615348736000, 4483454976000, 32011868528640000, 51090942171709440000, 152579284313702400000, 120866571766215475200000, 50814724101952310083584000000
Offset: 0
a(1) = 12 because (1/3)*int(t*(t^2-1^2), t=0..1) = -1/12.
a(3) = denom((-((1/6)/2)*(4) +((-1/30)/4)*(5) - ((1/42)/6)*(1))/5!) so a(3) = 60480. - _Johannes W. Meijer_, Jan 27 2009
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Iaroslav V. Blagouchine, Three notes on Ser's and Hasse's representation for the zeta-functions, Integers (2018) 18A, Article #A3.
- H. E. Salzer, Coefficients for numerical integration with central differences, Phil. Mag., 35 (1944), 262-264. [Annotated scanned copy]
- H. E. Salzer, XXXII. Coefficients for numerical integration with central differences, Phil. Mag., 35 (1944), 262-264.
- H. E. Salzer, Coefficients for repeated integration with central differences, Journal of Mathematics and Physics, 28 (1949), 54-61.
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 545.
Factor of ZS1[ -1,n] matrix coefficients in
A160474.
-
a := n->denom((2/(2*n+1)!)*int(t*product(t^2-k^2,k=1..n),t=0..1)): seq(a(n), n=0..14); # Emeric Deutsch, Feb 20 2005
nmax:=12: with(combinat): A008955 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1)) * A008955(n-1,n-k1), k1=1..n)/(2*n-1)! end do: a := n-> denom(Omega(n)): seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 27 2009, Revised Sep 21 2012
-
a[0] = 1; a[n_] := Sum[Binomial[2*n+k-1, 2*n-1]*Sum[Binomial[k, j]*Sum[(2*i-j)^(2*n+j)*Binomial[j, i]*(-1)^(-i), {i, 0, j/2}]/(2^j*(2*n+j)!), {j, 1, k}], {k, 1, 2*n}]/2^(2*n-1); Table[a[n] // Denominator, {n, 0, 12}] (* Jean-François Alcover, Apr 18 2014, after Vladimir Kruchinin *)
a[n_] := Denominator[SeriesCoefficient[1/2^(2*n)*Csch[x]^(2*n), {x, 0, 0}]] (* Istvan Mezo, Apr 21 2023 *)
A160476
The first right hand column of the Zeta and Lambda triangles.
Original entry on oeis.org
1, 10, 210, 420, 4620, 60060, 60060, 2042040, 116396280, 581981400, 13385572200, 13385572200, 13385572200, 388181593800, 12033629407800, 24067258815600, 24067258815600, 890488576177200, 890488576177200
Offset: 2
-
nmax := 20; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 2 to nmax do Zc(n-1) := d(n-1)*2/((2*n-1)*(n-1)) end do: c(1) := denom(Zc(1)): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, denom(Zc(n+1))): p(n+1) := c(n) end do: for n from 2 to nmax do a1(n) := p(n)*2^(2*n-3)/(3*factorial(2*n-1)) od: seq(a1(n), n=2..nmax);
# End first program (program edited, Johannes W. Meijer, Sep 20 2012)
nmax1 := nmax: for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax1 do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1)/ (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax1 do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax1 do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax1 do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax1 do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax1 do a2(n) := p(n)/(6*factorial(2*n-2)) od: seq(a2(n), n=2..nmax1);
# End second program (program edited, Johannes W. Meijer, Sep 20 2012)
Comments