cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A162440 The pg(n) sequence that is associated with the Eta triangle A160464.

Original entry on oeis.org

2, 16, 144, 4608, 115200, 4147200, 203212800, 26011238400, 2106910310400, 210691031040000, 25493614755840000, 3671080524840960000, 620412608698122240000, 121600871304831959040000
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The EG1 matrix coefficients are defined by EG1[2m-1,1] = 2*eta(2m-1) and the recurrence relation EG1[2m-1,n] = EG1[2m-1,n-1] - EG1[2m-3,n-1]/(n-1)^2 with m = .., -2, -1, 0, 1, 2, ... and n = 1, 2, 3, ... . As usual, eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. For the EG2 matrix, the even counterpart of the EG1 matrix, see A008955.
The coefficients in the columns of the EG1 matrix, for m >= 1 and n >= 2, can be generated with GFE(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GFE(z;n=1) + ETA(z,n))/pg(n) for n >= 2.
The CFN1(z,n) polynomials depend on the central factorial numbers A008955 and the ETA(z,n) are the Eta polynomials which led to the Eta triangle, see for both A160464.
The pg(n) sequence can be generated with the first Maple program and the EG1[2m-1,n] matrix coefficients can be generated with the second Maple program.
The EG1 matrix is related to the ES1 matrix, see A160464 and the formulas below.

Examples

			The first few generating functions GFE(z;n) are:
GFE(z;n=2) = ((-1)*2*(z^2 - 1)*GFE(z;n=1) + (-1))/2,
GFE(z;n=3) = ((+1)*4*(z^4 - 5*z^2 + 4)*GFE(z;n=1) + (-11 + 2*z^2))/16,
GFE(z;n=4) = ((-1)*4*(z^6-14*z^4+49*z^2-36)*GFE(z;n=1) + (-114+29*z^2-2*z^4))/144.
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

The ETA(z, n) polynomials and the ES1 matrix lead to the Eta triangle A160464.
The CFN1(z, n), the t1(n, m) and the EG2 matrix lead to A008955.
The EG1[ -1, n] equal (1/2)*A001803(n-1)/A046161(n-1).
The r(n) sequence equals A062383(n) (n>=1).
The e(n) sequence equals A029837(n) (n>=1).
Cf. A160473 (p(n) sequence).
Cf. A162443 (BG1 matrix), A162446 (ZG1 matrix) and A162448 (LG1 matrix).

Programs

  • Maple
    nmax := 16; seq((n-1)!^2*2^floor(ln(n-1)/ln(2)+1), n=2..nmax);
    # End program 1
    nmax1 := 5; coln := 4; mmax1 := nmax1: for n from 0 to nmax1 do t1(n, 0) := 1 end do: for n from 0 to nmax1 do t1(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do t1(n, m) := t1(n-1, m-1)*n^2 + t1(n-1, m) end do: end do: for m from 1 to mmax1 do EG1[1-2*m, 1] := evalf((2^(2*m)-1)* bernoulli(2*m)/(m)) od: EG1[1, 1] := evalf(2*ln(2)): for m from 2 to mmax1 do EG1[2*m-1, 1] := evalf(2*(1-2^(1-(2*m-1))) * Zeta(2*m-1)) od: for m from -mmax1+coln to mmax1 do EG1[2*m-1, coln]:= (-1)^(coln+1)*sum((-1)^k*t1(coln-1, k) * EG1[1-2*coln+2*m+2*k, 1], k=0..coln-1)/(coln-1)!^2 od;
    # End program 2 (Edited by Johannes W. Meijer, Sep 21 2012)

Formula

pg(n) = (n-1)!^2*2^floor(log(n-1)/log(2)+1) for n >= 2.
r(n) = 2^e(n) = 2^floor(log(n-1)/log(2)+1) for n >= 2.
EG1[ -1,n] = 2^(1-2*n)*(2*n-1)!/((n-1)!^2) for n >= 1.
GFE(z;n) = sum (EG1[2*m-1,n]*z^(2*m-2), m=1..infinity).
GFE(z;n) = (1-z^2/(n-1)^2)*GFE(z;n-1)-EG1[ -1,n-1]/(n-1)^2 for n = >2. with GFE(z;n=1) = 2*log(2)-Psi(z)-Psi(-z)+Psi(z/2)+Psi(-z/2) and Psi(z) is the digamma function.
EG1[2m-1,n] = (2*2^(1-2*n)*(2*n-1)!/((n-1)!^2)) * ES1[2m-1,n].

A162446 Numerators of the column sums of the ZG1 matrix.

Original entry on oeis.org

-13, 401, -68323, 2067169, -91473331, 250738892357, -12072244190753, 105796895635531, -29605311573467996893, 9784971385947359480303, -5408317625058335310276319, 2111561851139130085557412009
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The ZG1 matrix coefficients are defined by ZG1[2m-1,1] = 2*zeta(2m-1) for m = 2, 3, .. , and the recurrence relation ZG1[2m-1,n] = (ZG1[2m-3,n-1] - (n-1)^2*ZG1[2m-1,n-1])/(n*(n-1)) with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. , under the condition that n <= (m-1). As usual zeta(m) is the Riemann zeta function. For the ZG2 matrix, the even counterpart of the ZG1 matrix, see A008955.
These two formulas enable us to determine the values of the ZG1[2*m-1,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, ZG1[1,1] = 2*gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the ZG1 matrix, for m >= 1 and n >= 2, can be generated with GFZ(z;n) = (hg(n)*CFN1(z;n)*GFZ(z;n=1) + ZETA(z;n))/pg(n) with pg(n) = 6*(n-1)!* (n)!*A160476(n) and hg(n) = 6*A160476(n). For the CFN1(z;n) and the ZETA(z;n) polynomials see A160474.
The column sums cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity), for n >= 2, of the ZG1 matrix can be determined with the first Maple program. In this program we have made use of the remarkable fact that if we take ZGx[2*m-1,n] = 2, for m >= 1, and ZGx[ -1,n] = ZG1[ -1,n] and assume that the recurrence relation remains the same we find that the column sums of this new matrix converge to the same values as the original cs(n).
The ZG1[2*m-1,n] matrix coefficients can be generated with the second Maple program.
The ZG1 matrix is related to the ZS1 matrix, see A160474 and the formulas below.

Examples

			The first few generating functions GFZ(z;n) are:
GFZ(z;2) = (6*(1*z^2-1)*GFZ(z;1) + (-1))/12
GFZ(z;3) = (60*(z^4-5*z^2+4)*GFZ(z;1) + (51-10*z^2))/720
GFZ(z;4) = (1260*(z^6-14*z^4+49*z^2-36)*GFZ(z;1) + (-10594+2961*z^2-210*z^4))/181440
		

Crossrefs

See A162447 for the denominators of the column sums.
The pg(n) and hg(n) sequences lead to A160476.
The ZG1[ -1, n] coefficients lead to A000984, A002195 and A002196.
The ZETA(z, n) polynomials and the ZS1 matrix lead to the Zeta triangle A160474.
The CFN1(z, n), the cfn1(n, k) and the ZG2 matrix lead to A008955.
The b(n) sequence equals A001790(n)/ A120777(n-1) for n >= 1.
Cf. A001620 (gamma) and A010790 (n!*(n+1)!).
Cf. A162440 (EG1 matrix), A162443 (BG1 matrix) and A162448 (LG1 matrix)

Programs

  • Maple
    nmax := 13; mmax := nmax: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! od: for n from 1 to nmax do ZG1[ -1, n] := binomial(2*n, n)*Omega(n) od: for n from 1 to nmax do ZGx[ -1, n] := ZG1[ -1, n] od: for m from 1 to mmax do ZGx[2*m-1, 1] := 2 od: for n from 2 to nmax do for m from 1 to mmax do ZGx[2*m-1, n] := (((ZGx[2*m-3, n-1]-(n-1)^2*ZGx[2*m-1, n-1])/(n*(n-1)))) od; s(n) := 0: for m from 1 to mmax do s(n) := s(n) + ZGx[2*m-1, n] od: od: seq(s(n), n=2..nmax);
    # End program 1
    nmax1 := 5; ncol := 3; Digits := 20: mmax1 := nmax1: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: ZG1[1, 1] := evalf(2*gamma): for m from 1 to mmax1 do ZG1[1-2*m, 1] := -bernoulli(2*m)/m od: for m from 2 to mmax1 do ZG1[2*m-1, 1] := evalf(2*Zeta(2*m-1)) od: for n from 1 to nmax1 do for m from -mmax1 to mmax1 do ZG1[2*m-1, n] := sum((-1)^(k1+1)*cfn1(n-1, k1-1)*ZG1[2*m-(2*n-2*k1+1), 1] /((n-1)!*(n)!), k1=1..n) od; od; for m from -mmax1+ncol to mmax1 do ZG1[2*m-1, ncol] := ZG1[2*m-1, ncol] od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(cs(n)) and denom(cs(n)) = A162447(n).
with cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity) for n >= 2.
GFZ(z;n) = sum( ZG1[2*m-1,n]*z^(2*m-2),m=1..infinity)
GFZ(z;n) = ZG1[ -1,n-1]/(n*(n-1))+(z^2-(n-1)^2)*GFZ(z;n-1)/(n*(n-1)) for n >= 2 with GFZ(z;n=1) = -Psi(1+z) - Psi(1-z).
ZG1[ -1,n] = binomial(2*n,n)*Omega[n] = A000984(n)*A002195(n)/A002196(n).
ZG1[2*m-1,n] = b(n)*ZS1[2*m-1,n] with b(n) = binomial(2*n,n)/2^(2*n-1) for n >= 1.

A160479 The ZL(n) sequence of the Zeta and Lambda triangles A160474 and A160487.

Original entry on oeis.org

10, 21, 2, 11, 13, 1, 34, 57, 5, 23, 1, 1, 29, 31, 2, 1, 37, 1, 41, 301, 1, 47, 1, 1, 53, 3, 1, 59, 61, 1, 2, 67, 1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 505, 103, 1, 107, 109, 11, 113, 1, 1, 1, 1, 1, 1, 127, 2, 131
Offset: 3

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

The rather strange ZL(n) sequence rules both the Zeta and Lambda triangles.
The Zeta triangle led to the first and the Lambda triangle to the second Maple algorithm.
The first ZL(n) formula is a conjecture. This formula links the ZL(n) to the prime numbers A000040; see A217983, A128060, A130290 and the third Maple program.

Crossrefs

Cf. A160474 and A160487.
The cnf1(n, k) are the central factorial numbers A008955.
The cnf2(n, k) are the central factorial numbers A008956.

Programs

  • Maple
    nmax := 65; for n from 0 to nmax do cfn1(n, 0):=1: cfn1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do cfn1(n, k) := cfn1(n-1, k-1)*n^2 + cfn1(n-1, k) end do: end do: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 1 to nmax do b(n) := 4^(-n)*(2*n+1)*n*denom(Omega(n)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)*(1/6)* 4^n/(2*n+1)! end do: for n from 3 to nmax+1 do ZL(n):=cm(n-1)/cm(n-2) end do: seq(ZL(n), n=3..nmax+1);
    # End program 1 (program edited by Johannes W. Meijer, Oct 25 2012)
    nmax1 := nmax; for n from 0 to nmax1 do cfn2(n, 0) :=1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax1 do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!) end do: for n from 1 to nmax1 do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax1-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax1 do cm(n) := c(n)/(6*(2*n)!) end do: for n from 3 to nmax1+1 do ZL(n) := cm(n-1)/cm(n-2) end do: seq(ZL(n), n=3..nmax1+1);
    # End program 2 (program edited by Johannes W. Meijer, Sep 20 2012)
    nmax2 := nmax: A000040 := proc(n): ithprime(n) end: A130290 := proc(n): if n =1 then 1 else (A000040(n)-1)/2 fi: end: A128060 := proc(n) local n1: n1:=2*n-1: if type(n1, prime) then A128060(n) := 1 else A128060(n) := n1 fi: end: for n from 1 to nmax2 do A217983(n) := 1 od: for n from 1 to nmax2 do for n1 from 1 to floor(log[A000040(n)](nmax2)) do A217983(A130290(n) * A000040(n)^n1) := A000040(n) od: od: ZL := proc(n): (2*n-1)*(A217983(n-1)/A128060(n)) end: seq(ZL(n), n=3..nmax2+1);
    # End program 3 (program added by Johannes W. Meijer, Oct 25 2012)

Formula

ZL(n) = (2*n-1) * (A217983(n-1)/A128060(n)) for n >= 3.
ZL(n) = ZETA(n, m)/(ZETA(n-1, m-1) - (n-1)^2 * ZETA(n-1, m)), see A160474.
ZL(n) = LAMBDA(n, m)/(LAMBDA(n-1, m-1) - (2*n-3)^2 * LAMBDA(n-1, m)), see A160487.
ZL(n) = A160476(n)/A160476(n-1).

Extensions

Comments, formulas and third Maple program added by Johannes W. Meijer, Oct 25 2012

A163927 Numerators of the higher order exponential integral constants alpha(k,4).

Original entry on oeis.org

1, 49, 1897, 69553, 2515513, 90663937, 3264855049, 117543378001, 4231639039705, 152339702576545, 5484235568128681, 197432536935184369, 7107571838026381177, 255872590744254526273, 9211413307971174616393
Offset: 0

Views

Author

Johannes W. Meijer and Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

The higher order exponential integrals, see A163931, are defined by E(x,m,n) = x^(n-1)*Integral_{t>=x} E(t,m-1,n)/t^n for m >= 1 and n >= 1, with E(x,m=0,n) = exp(-x).
The series expansions of the higher order exponential integrals are dominated by the alpha(k,n) and the gamma(k,n) constants, see A090998.
The first Maple program uses the alpha(k,n) formula and the second the GF(z,n) to generate the alpha(k,n) coefficients in each column.
Appears to equal the numerator of the multiple harmonic (star) sum Sum_{1 <= k_1 <= ... <= k_n <= 3} 1/(k_1^2*...*k_n^2). If true, then a(n) = numerator( 3/2 - 3/(5*4^n) + 1/(10*9^n) ). - Peter Bala, Jan 31 2019

Examples

			a(k=0,n=4) = 1, a(k=1,4) = 49/36, a(k=2,4) = 1897/1296, a(k=3,4) = 69553/46656.
		

Crossrefs

Cf. A163931 (E(x,m,n)), A090998 (gamma(k,n)).
a(k,1) = A000007(k)
a(k,2) = A000012(k) = 1^k.
a(k,3) = A002450(k+1)/A000302(k) with A000302(k) = 4^k.
a(k,4) = A163927(k)/A009980(k) with A009980(k) = 36^k.
The GF(z,n) lead to A008955.
The denominators of a(1,n), n >= 2, lead to A007407.

Programs

  • Maple
    coln := 4; nmax := 15; kmax := nmax: k:=0: for n from 1 to nmax do alpha(k, n) := 1 od: for k from 1 to kmax do for n from 1 to nmax do alpha(k, n) := (1/k)*sum(sum(p^(-2*(k-i)), p=0..n-1)*alpha(i, n), i=0..k-1) od; od: seq(alpha(k, coln), k=0..nmax-1);
    # End program 1
    coln:=4; nmax1 := 16; for n from 0 to nmax1 do A008955(n, 0):=1 end do: for n from 0 to nmax1 do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: m:=coln-1: f(m):=0: for n from 0 to m do f(m) := f(m) + (-1)^(n + m)*A008955(m, n)*z^(2*m-2*n) od: GF(z,coln) := m!^2/f(m): GF(z,coln):=series(GF(z,coln), z, nmax1);
    # End program 2

Formula

alpha(k,n) = (1/k) * Sum_{i=0..k-1} (Sum_{p=0..n-1}(p^(2*i-2*k))*alpha(i, n)) with alpha(0,n) = 1, k >= 0 and n >= 1.
alpha(k,n) = alpha(k,n+1) -alpha(k-1,n+1)/n^2.
GF(z,n) = product((1-(z/k)^2)^(-1), k = 1..n-1) = (Pi*z/sin(Pi*z))/(Beta(n+z,n-z)/Beta(n,n)).

A269944 Triangle read by rows, Stirling cycle numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + (n-1)^2*T(n-1, k), for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 5, 1, 0, 36, 49, 14, 1, 0, 576, 820, 273, 30, 1, 0, 14400, 21076, 7645, 1023, 55, 1, 0, 518400, 773136, 296296, 44473, 3003, 91, 1, 0, 25401600, 38402064, 15291640, 2475473, 191620, 7462, 140, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also known as central factorial numbers |t(2*n, 2*k)| (cf. A008955).
The analog for the Stirling set numbers is A269945.

Examples

			Triangle starts:
  [1]
  [0,     1]
  [0,     1,     1]
  [0,     4,     5,    1]
  [0,    36,    49,   14,    1]
  [0,   576,   820,  273,   30,  1]
  [0, 14400, 21076, 7645, 1023, 55, 1]
		

Crossrefs

Variants: A204579 (signed, row 0 missing), A008955.
Cf. A007318 (order 0), A132393 (order 1), A269947 (order 3).
Cf. A000330 (subdiagonal), A001044 (column 1), A101686 (row sums), A269945 (Stirling set), A269941 (P-transform).

Programs

  • Maple
    T := proc(n, k) option remember; if n=k then return 1 fi; if k<0 or k>n then return 0 fi; T(n-1, k-1)+(n-1)^2*T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..8);
    # Alternatively with the P-transform (cf. A269941):
    A269944_row := n -> PTrans(n, n->`if`(n=1, 1, (n-1)^2/(n*(4*n-2))), (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269944_row(n)), n=0..8);
    # From Peter Luschny, Feb 29 2024: (Start)
    # Computed as the coefficients of polynomials:
    P := (x, n) -> local j; mul((j - x)*(j + x), j = 0..n-1):
    T := (n, k) -> (-1)^k*coeff(P(x, n), x, 2*k):
    for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
    # Alternative, using the exponential generating function:
    egf := cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)):
    ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
    Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, n-k), k = 0..n):
    seq(print(Trow(n)), n = 0..9);  # (End)
    # Alternative, row polynomials:
    rowpoly := n -> pochhammer(-sqrt(x), n) * pochhammer(sqrt(x), n):
    row := n -> local k; seq((-1)^k*coeff(expand(rowpoly(n)), x, k), k = 0..n):
    seq(print(row(n)), n = 0..6);  # Peter Luschny, Aug 03 2024
  • Mathematica
    T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + (n - 1)^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Jul 25 2019 *)
  • Sage
    stircycle2 = lambda n: 1 if n == 1 else (n-1)^2/(n*(4*n-2))
    norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
    M = PtransMatrix(7, stircycle2, norm)
    for m in M: print(m)

Formula

T(n,k) = (-1)^k*((2*n)! / (2*k)!)*P[n, k](s(n)) where P is the P-transform and s(n) = (n - 1)^2 / (n*(4*n - 2)). The P-transform is defined in the link. See the Sage and Maple implementations below.
T(n, 1) = ((n - 1)!)^2 for n >= 1 (cf. A001044).
T(n, n-1) = n*(n - 1)*(2*n - 1)/6 for n >= 1 (cf. A000330).
Row sums: Product_{k=1..n} ((k - 1)^2 + 1) for n >= 0 (cf. A101686).
From Fabián Pereyra, Apr 25 2022: (Start)
T(n,k) = (-1)^(n-k)*Sum_{j=2*k..2*n} Stirling1(2*n,j)*binomial(j,2*k)*(n-1)^(j-2*k).
T(n,k) = Sum_{j=0..2*k} (-1)^(j - k)*Stirling1(n, j)*Stirling1(n, 2*k - j). (End)
From Peter Luschny, Feb 29 2024: (Start)
T(n, k) = (-1)^k*[x^(2*k)] P(x, n) where P(x, n) = Product_{j=0..n-1} (j-x)*(j+x).
T(n, k) = (2*n)!*[t^(n-k)] [x^(2*n)] cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)). (End)
T(n, k) = (-1)^k*[x^k] Pochhammer(-sqrt(x), n) * Pochhammer(sqrt(x), n). - Peter Luschny, Aug 03 2024

A008957 Triangle of central factorial numbers T(2*n,2*n-2*k), k >= 0, n >= 1 (in Riordan's notation).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 14, 21, 1, 1, 30, 147, 85, 1, 1, 55, 627, 1408, 341, 1, 1, 91, 2002, 11440, 13013, 1365, 1, 1, 140, 5278, 61490, 196053, 118482, 5461, 1, 1, 204, 12138, 251498, 1733303, 3255330, 1071799, 21845, 1, 1, 285, 25194, 846260, 10787231
Offset: 1

Views

Author

Keywords

Comments

D. E. Knuth [1992] on page 10 gives the formula Sum n^(2m-1) = Sum_{k=1..m} (2k-1)! T(2m,2k) binomial(n+k, 2k) where T(m, k) is the central factorial number of the second kind. - Michael Somos, May 08 2018

Examples

			The triangle starts:
  1;
  1,  1;
  1,  5,    1;
  1, 14,   21,     1;
  1, 30,  147,    85,     1;
  1, 55,  627,  1408,   341,    1;
  1, 91, 2002, 11440, 13013, 1365, 1;
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217, Table 6.2(a).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.

Crossrefs

Row reversed version of A036969. (0,0)-based version: A269945.
Cf. A008955.

Programs

  • Haskell
    a008957 n k = a008957_tabl !! (n-1) (k-1)
    a008957_row n = a008957_tabl !! (n-1)
    a008957_tabl = map reverse a036969_tabl
    -- Reinhard Zumkeller, Feb 18 2013
    
  • Maple
    A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end; # Gives rows of triangle in reversed order
  • Mathematica
    t[n_, n_] = t[n_, 1] = 1;
    t[n_, k_] := t[n-1, k-1] + k^2 t[n-1, k];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, n, 1, -1}]][[1 ;; 50]] (* Jean-François Alcover, Jun 16 2011 *)
  • PARI
    {T(n, k) = if( n<1 || k>n, 0, n==k || k==1, 1, T(n-1, k-1) + k^2 * T(n-1, k))}; \\ Michael Somos, May 08 2018
    
  • Sage
    def A008957(n, k):
        m = n - k
        return 2*sum((-1)^(j+m)*(j+1)^(2*n)/(factorial(j+m+2)*factorial(m-j)) for j in (0..m))
    for n in (1..7): print([A008957(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018

Formula

From Michael Somos, May 08 2018: (Start)
T(n, k) = T(n-1, k-1) + k^2 * T(n-1, k), where T(n, n) = T(n, 1) = 1.
E.g.f.: x^2 * (cosh(sinh(y*x/2) / (x/2)) - 1) = (1*x^2)*y^2/2! + (1*x^2 + 1*x^4)*y^4/4! + (1*x^2 + 5*x^4 + 1*x^6)*y^6/6! + (1*x^2 + 14*x^4 + 21*x^6 + 1*x^8)*y^8/8! + ... (End)

Extensions

More terms from Vladeta Jovovic, Apr 16 2000

A161742 Third left hand column of the RSEG2 triangle A161739.

Original entry on oeis.org

1, 4, 13, 30, -14, -504, 736, 44640, -104544, -10644480, 33246720, 5425056000, -20843695872, -5185511654400, 23457840537600, 8506857655296000, -44092609863966720, -22430879475779174400, 130748316971139072000
Offset: 2

Views

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Crossrefs

Equals third left hand column of A161739 (RSEG2 triangle).
Other left hand columns are A129825 and A161743.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.
A001710 (n!/2!), A001715 (n!/3!), A001720 (n!/4!), A001725 (n!/5!), A001730 (n!/6!), A049388 (n!/7!), A049389 (n!/8!), A049398 (n!/9!), A051431 (n!/10!) appear in Maple program.

Programs

  • Maple
    nmax:=21; for n from 0 to nmax do A008955(n,0):=1 end do: for n from 0 to nmax do A008955(n,n):=(n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n,m):= A008955(n-1,m-1)*n^2+A008955(n-1,m) end do: end do: for n from 1 to nmax do A028246(n,1):=1 od: for n from 1 to nmax do A028246(n,n):=(n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n,m):=m*A028246(n-1,m)+(m-1)*A028246(n-1,m-1) od: od: for n from 2 to nmax do a(n):=sum(((-1)^k/((k+1)!*(k+2)!)) *(n!)*A028246(n,k+2)* A008955(k+1,k),k=0..n-2) od: seq(a(n),n=2..nmax);

Formula

a(n) = sum(((-1)^k/((k+1)!*(k+2)!))*(n!)*A028246(n, k+2)*A008955(k+1, k), k=0..n-2)

A161743 Fourth left hand column of the RSEG2 triangle A161739.

Original entry on oeis.org

1, 10, 73, 425, 1561, -2856, -73520, 380160, 15376416, -117209664, -7506967104, 72162155520, 7045087741056, -80246202992640, -11448278791372800, 149576169325363200, 30017051616972275712, -440857664887810867200
Offset: 3

Views

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Crossrefs

Equals fourth left hand column of A161739 (RSEG2 triangle).
Other left hand columns are A129825 and A161742.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.
A001710 (n!/2!), A001715 (n!/3!), A001720 (n!/4!), A001725 (n!/5!), A001730 (n!/6!), A049388 (n!/7!), A049389 (n!/8!), A049398 (n!/9!), A051431 (n!/10!) appear in Maple program.

Programs

  • Maple
    nmax:=21; for n from 0 to nmax do A008955(n,0):=1 end do: for n from 0 to nmax do A008955(n,n):=(n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n,m):= A008955(n-1,m-1)*n^2+A008955(n-1,m) end do: end do: for n from 1 to nmax do A028246(n,1):=1 od: for n from 1 to nmax do A028246(n,n):=(n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n,m):=m*A028246(n-1,m)+(m-1)*A028246(n-1,m-1) od: od: for n from 3 to nmax do a(n) := sum(((-1)^k/((k+2)!*(k+3)!))*(n!)*A028246(n,k+3)* A008955(k+2,k), k=0..n-3) od: seq(a(n),n=3..nmax);

Formula

a(n) = sum(((-1)^k/((k+2)!*(k+3)!))*(n!)*A028246(n, k+3)*A008955(k+2, k), k = 0..n-3).

A182867 Triangle read by rows: row n gives coefficients in expansion of Product_{i=1..n} (x - (2i)^2), highest powers first.

Original entry on oeis.org

1, 1, -4, 1, -20, 64, 1, -56, 784, -2304, 1, -120, 4368, -52480, 147456, 1, -220, 16368, -489280, 5395456, -14745600, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400, 1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400, 1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400, 1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2011

Keywords

Comments

These are scaled central factorial numbers (see the discussion in the Comments section of A008955). The coefficients in the expansion of Product_{i=1..n} (x - i^2) give A008955, and the coefficients in the expansion of Product_{i=1..n} (x - (2i+1)^2) give A008956.

Examples

			Triangle begins:
 1
 1, -4
 1, -20, 64
 1, -56, 784, -2304
 1, -120, 4368, -52480, 147456
 1, -220, 16368, -489280, 5395456, -14745600
 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400
 1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400
 1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400
 1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600
...
For example, for n=2, (x-4)(x-16) = x^2 - 20x + 64 => [1, -20, 64].
		

Crossrefs

Cf. A008955, A008956. This triangle is formed from the even-indexed rows of A182971 (the odd-indexed rows give A008956).
Cf. A160563.

Programs

  • Maple
    Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2)));
    else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi;
    for n from 0 to 10 do
    t1:=eval(Q(2*n)); t1d:=degree(t1);
    t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
    lprint(t2);
    od:
    # Using a bivariate generating function (adding a superdiagonal 1,0,0, ...):
    gf := (t + sqrt(1 + t^2))^x:
    ser := series(gf, t, 20): ct := n -> coeff(ser, t, n):
    T := (n, k) -> n!*coeff(ct(n), x, n - k):
    EvenPart := (T, len) -> local n, k;
    seq(print(seq(T(n, k), k = 0..n, 2)), n = 0..2*len-1, 2):
    EvenPart(T, 6);  # Peter Luschny, Mar 03 2024

Formula

Given a (0, 0)-based triangle U we call the triangle [U(n, k), k=0..n step 2, n=0..len step 2] the 'even subtriangle' of U. This triangle is the even subtriangle of U(n, k) = n! * [x^(n-k)] [t^n] (t + sqrt(1 + t^2))^x, albeit adding a superdiagonal 1, 0, 0, ... See A160563 for the odd subtriangle. - Peter Luschny, Mar 03 2024

A182971 Triangle read by rows: coefficients in expansion of Q(n) = (x-n^2)*(x-(n-2)^2)*(x-(n-4)^2)*...*(x-(1 or 2)^2), highest powers first.

Original entry on oeis.org

1, 1, -1, 1, -4, 1, -10, 9, 1, -20, 64, 1, -35, 259, -225, 1, -56, 784, -2304, 1, -84, 1974, -12916, 11025, 1, -120, 4368, -52480, 147456, 1, -165, 8778, -172810, 1057221, -893025, 1, -220, 16368, -489280, 5395456, -14745600, 1, -286, 28743, -1234948, 21967231, -128816766, 108056025, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2011

Keywords

Comments

These are scaled versions of the central factorial numbers in A008955 and A008956.
Even-indexed rows give A182867, odd-indexed rows give A008956.
A121408 is an unsigned and aerated version of the row reverse of this triangle. - Peter Bala, Aug 29 2012

Examples

			Triangle begins:
1
1, -1
1, -4
1, -10, 9
1, -20, 64
1, -35, 259, -225
1, -56, 784, -2304
1, -84, 1974, -12916, 11025
1, -120, 4368, -52480, 147456
1, -165, 8778, -172810, 1057221, -893025
1, -220, 16368, -489280, 5395456, -14745600
...
E.g. for n=5 Q(5) = (x-1^2)*(x-3^2)*(x-5^2) = x^3-35*x^2+259*x-225.
		

Crossrefs

Even-indexed rows give A182867, odd-indexed rows give A008956.
Column 1,4,10,20, ... is A000292. The next two columns give A181888, A184878. The last diagonal is A184877.

Programs

  • Maple
    Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2)));
    else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi;
    for n from 0 to 12 do
    t1:=eval(Q(n)); t1d:=degree(t1);
    t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
    lprint(t2);
    od:

Formula

For n even, let Q(n) = Product_{i=1..n/2} (x - (2*i)^2) and for n odd let Q(n) = Product_{i=0..(n-1)/2} (x - (2i+1)^2). n-th row of triangle gives coefficients in expansion of Q(n).
Previous Showing 21-30 of 37 results. Next