cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A008955 Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 4, 1, 14, 49, 36, 1, 30, 273, 820, 576, 1, 55, 1023, 7645, 21076, 14400, 1, 91, 3003, 44473, 296296, 773136, 518400, 1, 140, 7462, 191620, 2475473, 15291640, 38402064, 25401600, 1, 204, 16422, 669188, 14739153, 173721912, 1017067024, 2483133696, 1625702400
Offset: 0

Views

Author

Keywords

Comments

Discussion of Central Factorial Numbers by N. J. A. Sloane, Feb 01 2011: (Start)
Here is Riordan's definition of the central factorial numbers t(n,k) given in Combinatorial Identities, Section 6.5:
For n >= 0, expand the polynomial
x^[n] = x*Product{i=1..n-1} (x+n/2-i) = Sum_{k=0..n} t(n,k)*x^k.
The t(n,k) are not always integers. The cases n even and n odd are best handled separately.
For n=2m, we have:
x^[2m] = Product_{i=0..m-1} (x^2-i^2) = Sum_{k=1..m} t(2m,2k)*x^(2k).
E.g. x^[8] = x^2(x^2-1^2)(x^2-2^2)(x^2-3^2) = x^8-14x^6+49x^4-36x^2,
which corresponds to row 4 of the present triangle.
So the m-th row of the present triangle gives the absolute values of the coefficients in the expansion of Product_{i=0..m-1} (x^2-i^2).
Equivalently, and simpler, the n-th row gives the coefficients in the expansion of Product_{i=1..n-1}(x+i^2), highest powers first.
For n odd, n=2m+1, we have:
x^[2m+1] = x*Product_{i=0..m-1}(x^2-((2i+1)/2)^2) = Sum_{k=0..m} t(2m+1,2k+1)*x^(2k+1).
E.g. x^[5] = x(x^2-(1/2)^2)(x^2-(3/2)^2) = x^5-10x^3/4+9x/16,
which corresponds to row 2 of the triangle in A008956.
We now rescale to get integers by replacing x by x/2 and multiplying by 2^(2m+1) (getting 1, -10, 9 from the example).
The result is that row m of triangle A008956 gives the coefficients in the expansion of x*Product_{i=0..m} (x^2-(2i+1)^2).
Equivalently, and simpler, the n-th row of A008956 gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first.
Note that the n-th row of A182867 gives the coefficients in the expansion of Product_{i=1..n} (x+(2i)^2), highest powers first.
(End)
Contribution from Johannes W. Meijer, Jun 18 2009: (Start)
We define Beta(n-z,n+z)/Beta(n,n) = Gamma(n-z)*Gamma(n+z)/Gamma(n)^2 = sum(EG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. The EG2[2m,n] coefficients are quite interesting, see A161739. Our definition leads to EG2[2m,1] = 2*eta(2m) and the recurrence relation EG2[2m,n] = EG2[2m,n-1] - EG2[2m-2,n-1]/(n-1)^2 for m = -2, -1, 0, 1, 2, ... and n = 2, 3, ... , with eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. We found for the matrix coefficients EG2[2m,n] = sum((-1)^(k+n)*t1(n-1,k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2,k=1..n) with the central factorial numbers t1(n,m) as defined above, see also the Maple program.
From the EG2 matrix we arrive at the ZG2 matrix, see A161739 for its odd counterpart, which is defined by ZG2[2m,1] = 2*zeta(2m) and the recurrence relation ZG2[2m,n] = ZG2[2m-2,n-1]/(n*(n-1))-(n-1)*ZG2[2m,n-1]/n for m = -2, -1, 0, 1, 2, ... and n = 2, 3, ... . We found for the ZG2[2m,n] = Sum_{k=1..n} (-1)^(k+1)*t1(n-1,k-1)* 2* zeta(2*m-2*n+2*k)/((n-1)!*(n)!), and we see that the central factorial numbers t1(n,m) once again play a crucial role.
(End)

Examples

			Triangle begins:
  1;
  1,   1;
  1,   5,   4;
  1,  14,  49,  36;
  1,  30, 273, 820, 576;
  ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Cf. A036969.
Columns include A000330, A000596, A000597. Right-hand columns include A001044, A001819, A001820, A001821. Row sums are in A101686.
Appears in A160464 (Eta triangle), A160474 (Zeta triangle), A160479 (ZL(n)), A161739 (RSEG2 triangle), A161742, A161743, A002195, A002196, A162440 (EG1 matrix), A162446 (ZG1 matrix) and A163927. - Johannes W. Meijer, Jun 18 2009, Jul 06 2009 and Aug 17 2009
Cf. A234324 (central terms).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return 1;
        elif k=n then return (Factorial(n))^2;
        else return n^2*T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..8], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 14 2019
  • Haskell
    a008955 n k = a008955_tabl !! n !! k
    a008955_row n = a008955_tabl !! n
    a008955_tabl = [1] : f [1] 1 1 where
       f xs u t = ys : f ys v (t * v) where
         ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
         v = u + 1
    -- Reinhard Zumkeller, Dec 24 2013
    
  • Magma
    T:= func< n,k | Factorial(2*(n+1))*(&+[(-1)^j*Binomial(n,k-j)*(&+[2^(m-2*k)*StirlingFirst(2*(n-k+1)+m, 2*(n-k+1))*Binomial(2*(n-k+1)+2*j-1, 2*(n-k+1)+m-1)/Factorial(2*(n-k+1)+m): m in [0..2*j]]): j in [0..k]]) >;
    [T(n,k): k in [0..n], n in [0..8]]; // G. C. Greubel, Sep 14 2019
    
  • Maple
    nmax:=7: for n from 0 to nmax do t1(n, 0):=1: t1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do t1(n, k) := t1(n-1, k-1)*n^2 + t1(n-1, k) end do: end do: seq(seq(t1(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
    t1 := proc(n,k)
            sum((-1)^j*stirling1(n+1,n+1-k+j)*stirling1(n+1,n+1-k-j),j=-k..k) ;
    end proc: # Mircea Merca, Apr 02 2012
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k=0, 1,
          add(T(j-1, k-1)*j^2, j=1..n))
        end:
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    t[n_, 0]=1; t[n_, n_]=(n!)^2; t[n_ , k_ ]:=t[n, k] = n^2*t[n-1, k-1] + t[n-1, k]; Flatten[Table[t[n, k], {n,0,8}, {k,0,n}] ][[1 ;; 42]]
    (* Jean-François Alcover, May 30 2011, after recurrence formula *)
  • Maxima
    T(n,m):=(2*(n+1))!*sum((-1)^k*binomial(n,m-k)*sum((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1,2*(n-m+1)+i-1))/(2*(n-m+1)+i)!,i,0,2*k),k,0,m); /* Vladimir Kruchinin, Oct 05 2013 */
    
  • PARI
    T(n,k)=if(k==0,1, if(k==n, (n!)^2, n^2*T(n-1, k-1) + T(n-1, k)));
    for(n=0,8, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 14 2019
    
  • Sage
    # This triangle is (0,0)-based.
    def A008955(n, k) :
        if k==0 : return 1
        if k==n : return factorial(n)^2
        return n^2*A008955(n-1, k-1) + A008955(n-1, k)
    for n in (0..7) : print([A008955(n, k) for k in (0..n)]) # Peter Luschny, Feb 04 2012
    

Formula

The n-th row gives the coefficients in the expansion of Product_{i=1..n-1}(x+i^2), highest powers first (see Comments section).
The triangle can be obtained from the recurrence t1(n,k) = n^2*t1(n-1,k-1) + t1(n-1,k) with t1(n,0) = 1 and t1(n,n) = (n!)^2.
t1(n,k) = Sum_{j=-k..k} (-1)^j*s(n+1,n+1-k+j)*s(n+1,n+1-k-j) = Sum_{j=0..2*(n+1-k)} (-1)^(n+1-k+j)*s(n+1,j)*s(n+1,2*(n+1-k)-j), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 02 2012
E.g.f.: cosh(2/sqrt(t)*asin(sqrt(t)*z/2)) = 1 + z^2/2! + (1 + t)*z^4/4! + (1 + 5*t + 4*t^2)*z^6/6! + ... (see Berndt, p.263 and p.306). - Peter Bala, Aug 29 2012
T(n,m) = (2*(n+1))!*Sum_{k=0..m} ((-1)^k*binomial(n,m-k)*Sum_{i=0..2*k} ((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1, 2*(n-m+1)+i-1))/(2*(n-m+1)+i)!)). - Vladimir Kruchinin, Oct 05 2013

Extensions

There's an error in the last column of Riordan's table (change 46076 to 21076).
More terms from Vladeta Jovovic, Apr 16 2000
Link added and cross-references edited by Johannes W. Meijer, Aug 17 2009
Discussion of Riordan's definition of central factorial numbers added by N. J. A. Sloane, Feb 01 2011

A008956 Triangle of central factorial numbers |4^k t(2n+1,2n+1-2k)| read by rows (n>=0, k=0..n).

Original entry on oeis.org

1, 1, 1, 1, 10, 9, 1, 35, 259, 225, 1, 84, 1974, 12916, 11025, 1, 165, 8778, 172810, 1057221, 893025, 1, 286, 28743, 1234948, 21967231, 128816766, 108056025, 1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225, 1, 680
Offset: 0

Views

Author

Keywords

Comments

The n-th row gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first (see the discussion of central factorial numbers in A008955). - N. J. A. Sloane, Feb 01 2011
Descending row polynomials in x^2 evaluated at k generate odd coefficients of e.g.f. sin(arcsin(kt)/k): 1, x^2 - 1, 9x^4 - 10x^2 + 1, 225x^6 - 259x^4 + 34x^2 - 1, ... - Ralf Stephan, Jan 16 2005
From Johannes W. Meijer, Jun 18 2009: (Start)
We define (Pi/2)*Beta(n-1/2-z/2,n-1/2+z/2)/Beta(n-1/2,n-1/2) = (Pi/2)*Gamma(n-1/2-z/2)* Gamma(n-1/2+z/2)/Gamma(n-1/2)^2 = sum(BG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. Our definition leads to BG2[2m,1] = 2*beta(2m+1) and the recurrence relation BG2[2m,n] = BG2[2m,n-1] - BG2[2m-2,n-1]/(2*n-3)^2 for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). We observe that beta(2m+1) = 0 for m = -1, -2, -3, .. .We found for the BG2[2*m,n] = sum((-1)^(k+n)*t2(n-1,k-1)* 2*beta(2*m-2*n+2*k+1),k=1..n)/((2*n-3)!!)^2 with the central factorial numbers t2(n,m) as defined above; see also the Maple program.
From the BG2 matrix and the closely related EG2 and ZG2 matrices, see A008955, we arrive at the LG2 matrix which is defined by LG2[2m-1,1] = 2*lambda(2*m) and the recurrence relation LG2[2*m-1,n] = LG2[2*m-3,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG2[2*m-1,n-1]/(2*n-1) for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. We found for the matrix coefficients LG2[2m-1,n] = sum((-1)^(k+1)* t2(n-1,k-1)*2*lambda(2*m-2*n+2*k)/((2*n-1)!!*(2*n-3)!!), k=1..n) and we see that the central factorial numbers t2(n,m) once again play a crucial role.
(End)

Examples

			Triangle begins:
[1]
[1, 1]
[1, 10, 9]
[1, 35, 259, 225]
[1, 84, 1974, 12916, 11025]
[1, 165, 8778, 172810, 1057221, 893025]
[1, 286, 28743, 1234948, 21967231, 128816766, 108056025]
[1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225]
...
		

References

  • P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989). [From Johannes W. Meijer, Jun 18 2009]
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Cf. A008958.
Columns include A000447, A001823. Right-hand columns include A001818, A001824, A001825. Cf. A008955.
Appears in A160480 (Beta triangle), A160487 (Lambda triangle), A160479 (ZL(n) sequence), A161736, A002197 and A002198. - Johannes W. Meijer, Jun 18 2009
Cf. A162443 (BG1 matrix) and A162448 (LG1 matrix). - Johannes W. Meijer, Jul 06 2009
Cf. A001147.

Programs

  • Haskell
    a008956 n k = a008956_tabl !! n !! k
    a008956_row n = a008956_tabl !! n
    a008956_tabl = [1] : f [1] 1 1 where
       f xs u t = ys : f ys v (t * v) where
         ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
         v = u + 2
    -- Reinhard Zumkeller, Dec 24 2013
  • Maple
    f:=n->mul(x+(2*i+1)^2,i=0..n-1);
    for n from 0 to 12 do
    t1:=eval(f(n)); t1d:=degree(t1);
    t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
    lprint(t2);
    od: # N. J. A. Sloane, Feb 01 2011
    A008956 := proc(n,k) local i ; mul( x+2*i-2*n-1,i=1..2*n) ; expand(%) ; coeftayl(%,x=0,2*(n-k)) ; abs(%) ; end: for n from 0 to 10 do for k from 0 to n do printf("%a,",A008956(n,k)) ; od: od: # R. J. Mathar, May 29 2009
    nmax:=7: for n from 0 to nmax do t2(n, 0):=1: t2(n, n):=(doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do t2(n, k) := (2*n-1)^2*t2(n-1, k-1)+t2(n-1, k) od: od: seq(seq(t2(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
  • Mathematica
    t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n-1)!!)^2; t[n_, k_] := t[n, k] = (2*n-1)^2*t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Johannes W. Meijer *)
  • PARI
    {T(n, k) = if( n<=0, k==0, (-1)^k * polcoeff( numerator( 2^(2*n -1) / sum(j=0, 2*n - 1, binomial( 2*n - 1, j) / (x + 2*n - 1 - 2*j))), 2*n - 2*k))}; /* Michael Somos, Feb 24 2003 */
    

Formula

Conjecture row sums: Sum_{k=0..n} T(n,k) = |A101927(n+1)|. - R. J. Mathar, May 29 2009
May be generated by the recurrence t2(n,k) = (2*n-1)^2*t2(n-1,k-1)+t2(n-1,k) with t2(n,0) = 1 and t2(n,n)=((2*n-1)!!)^2. - Johannes W. Meijer, Jun 18 2009

Extensions

More terms from Vladeta Jovovic, Apr 16 2000
Edited by N. J. A. Sloane, Feb 01 2011

A160487 The Lambda triangle.

Original entry on oeis.org

1, -107, 10, 59845, -7497, 210, -6059823, 854396, -35574, 420, 5508149745, -827924889, 41094790, -765534, 4620, -8781562891079, 1373931797082, -75405128227, 1738417252, -17219202, 60060
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009, Sep 18 2012

Keywords

Comments

The coefficients of the LS1 matrix are defined by LS1[2*m,n] = int(y^(2*m)/(sinh(y))^(2*n-1),y=0..infinity)/factorial(2*m) for m = 1, 2, 3, .. and n = 1, 2, 3, .. under the condition that n <= m.
This definition leads to LS1[2*m,n=1] = 2*lambda(2*m+1), for m = 1, 2, .. , and the recurrence relation LS1[2*m,n] = ((2*n-3)/(2*n-2))*(LS1[2*m-2,n-1]/(2*n-3)^2- LS1[2*m,n-1]). As usual lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function.
These two formulas enable us to determine the values of the LS1[2*m,n] coefficients, for all integers m and all positive integers n, but not for all n. If we choose, somewhat but not entirely arbitrarily, LS1[m=0,n=1] = gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the LS1 matrix, for m = 0, 1, 2, .. , and n = 2, 3, 4 .. , can be generated with the GL(z;n) polynomials for which we found the following general expression GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n).
The CFN2(z;n) polynomials depend on the central factorial numbers A008956.
The LAMBDA(z;n) are the Lambda polynomials which lead to the Lambda triangle.
The zero patterns of the Lambda polynomials resemble a UFO. These patterns resemble those of the Eta, Zeta and Beta polynomials, see A160464, A160474 and A160480.
The first Maple algorithm generates the coefficients of the Lambda triangle. The second Maple algorithm generates the LS1[2*m,n] coefficients for m= -1, -2, -3, .. .
Some of our results are conjectures based on numerical evidence.

Examples

			The first few rows of the triangle LAMBDA(n,m) with n=2,3,.. and m=1,2,.. are
  [1]
  [ -107, 10]
  [59845, -7497, 210]
  [ -6059823, 854396, -35574, 420]
The first few LAMBDA(z;n) polynomials are
  LAMBDA (z;n=2) = 1
  LAMBDA (z;n=3) = -107 +10*z^2
  LAMBDA (z;n=4) = 59845-7497*z^2+210*z^4
The first few CFN2(z;n) polynomials are
  CFN2(z;n=2) = (z^2-1)
  CFN2(z;n=3) = (z^4-10*z^2+9)
  CFN2(z;n=4) = (z^6- 35*z^4+259*z^2-225)
The first few generating functions GL(z;n) are:
  GL(z;n=2) = (6*(z^2-1)*GL(z,n=1) + (1)) /12
  GL(z;n=3) = (60*(z^4-10*z^2+9)*GL(z,n=1)+ (-107+10*z^2)) / 1440
  GL(z;n=4) = (1260*( z^6- 35*z^4+259*z^2-225)*GL(z,n=1) + (59845-7497*z^2+ 210*z^4))/907200
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

A160488 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A160489 equals the rows sums.
A160490 equals the p(n) sequence.
A160479 equals the ZL(n) sequence.
A001620 is the Euler-Mascheroni constant gamma.
The LS1[ -2, n] coefficients lead to A002197, A002198 and A058962.
The LS1[ -2*m, 1] coefficients equal (-1)^(m+1)*A036282/A036283.
The CFN2(z, n) and the cfn2(n, k) lead to A008956.
Cf. The Eta, Zeta and Beta triangles A160464, A160474 and A160480.
Cf. A162448 (LG1 matrix)

Programs

  • Maple
    nmax:=7; for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1, n), k1=1..n) / (2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1) / (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax do LAMBDA(n, 1) := p(n)*f(n) end do: mmax:=nmax: for n from 2 to nmax do LAMBDA(n, n) := 0 end do: for n from 1 to nmax do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)/(6*(2*n)!) end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: for m from 2 to mmax do for n from m+1 to nmax do LAMBDA(n, m) := ZL(n)*(LAMBDA(n-1, m-1)-(2*n-3)^2*LAMBDA(n-1, m)) end do end do; seq(seq(LAMBDA(n,m), m=1..n-1), n=2..nmax);
    # End first program.
    nmax1:=10; m:=1; LS1row:=-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1:=nmax1: for m1 from 1 to mmax1 do LS1[-2*m1, 1] := 2*(1-2^(-(-2*m1+1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do LS1[ -2*m1, n] := sum((-1)^(k1+1)*cfn2(n-1,k1-1)* LS1[2*k1-2*n-2*m1, 1], k1=1..n)/(2*n-2)! od: od: seq(LS1[ -2*m, n], n=1..nmax1-m+1);
    # End second program.

Formula

We discovered a remarkable relation between the Lambda triangle coefficients Lambda(n,m) = ZL(n)*(Lambda(n-1,m-1)-(2*n-3)^2*Lambda(n-1,m)) for n = 3, 4, .. and m = 2, 3, .. . See A160488 for LAMBDA(n,m=1) and furthermore LAMBDA(n,n) = 0 for n = 2, 3, .. .
We observe that the ZL(n) = A160479(n) sequence also rules the Zeta triangle A160474.
The generating functions GL(z;n) of the coefficients in the matrix columns are defined by
GL(z;n) = sum(LS1[2*m-2,n]*z^(2*m-2), m=1..infinity), with n = 1, 2, 3, .. .
This definition, and our choice of LS1[m=0,n=1] = gamma, leads to GL(z;n=1) = -2*Psi(1-z)+Psi(1-(z/2))-(Pi/2)*tan(Pi*z/2) with Psi(z) the digamma-function. Furthermore we discovered that GL(z;n) =GL(z;n-1)*(z^2/((2*n-2)*(2*n-3)) -(2*n-3)/((2*n-2)))+LS1[ -2,n-1]/((2*n-2)*(2*n-3)) for n = 2, 3 , .. . with LS1[ -2,n] = (-1)^(n-1)*4*A058962(n-1)*A002197(n-1)/A002198(n-1) for n = 1, 2, .. , with A058962(n-1) = 2^(2*n-2)*(2*n-1).
We found the following general expression for the GL(z;n) polynomials, for n = 2, 3, ..
GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n) with
h(n) = 6*A160476(n) and p(n) = A160490(n).

A160474 The Zeta triangle.

Original entry on oeis.org

-1, 51, -10, -10594, 2961, -210, 356487, -115940, 12642, -420, -101141295, 35804857, -4751890, 254562, -4620, 48350824787, -18071509911, 2689347661, -180909586, 5471466, -60060
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

The coefficients of the ZS1 matrix are defined by ZS1[2*m-1,n] = (2^(2*m-1))*int(y^(2*m-1)/(sinh(y))^(2*n), y=0..infinity)/factorial(2*m-1) for m = 1, 2, 3, .. and n = 1, 2, 3, .. under the condition that n <= (m-1).
This definition leads to ZS1[2*m-1,n=1] = 2*zeta(2*m-1), for m = 2, 3, .. , and the recurrence relation ZS1[2*m-1,n]:=(1/(2*n-1))*((2/(n-1))*ZS1[2*m-3,n-1]-(2*n-2)*ZS1[2*m-1,n-1]). As usual zeta(m) is the Riemann zeta function. These two formulas enable us to determine the values of the ZS[2*m-1,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, ZS1[1,n=1] = 2*gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the ZS1 matrix, for m = 1, 2, 3, .., and n = 2, 3, 4 .. , can be generated with the GH(z;n) polynomials for which we found the following general expression GH(z;n) = (h(n)*CFN1(z;n)*GH(z;n=1) + ZETA(z;n))/p(n).
The CFN1(z;n) polynomials depend on the central factorial numbers A008955.
The ZETA(z;n) are the Zeta polynomials which lead to the Zeta triangle.
The zero patterns of the Zeta polynomials resemble a UFO. These patterns resemble those of the Eta, Beta and Lambda polynomials, see A160464, A160480 and A160487.
The first Maple algorithm generates the coefficients of the Zeta triangle. The second Maple algorithm generates the ZS1[2*m-1,n] coefficients for m= 0, -1, -2, .. .
The M(n) sequence, see the second Maple algorithm, leads to Gould's sequence A001316 and a sequence that resembles the denominators in Taylor series for tan(x), i.e., A156769(n).
Some of our results are conjectures based on numerical evidence.

Examples

			The first few rows of the triangle ZETA(n,m) with n=2,3,... and m=1,2,... are
  [ -1],
  [51, -10],
  [ -10594, 2961, -210],
  [356487, -115940, 12642, -420].
The first few ZETA(z;n) polynomials are
  ZETA(z;n=2) = -1,
  ZETA(z;n=3) = 51-10*z^2,
  ZETA(z;n=4) = -10594 + 2961*z^2 - 210*z^4.
The first few CFN1(z;n) polynomials are
  CFN1(z;n=2) = (z^2-1),
  CFN1(z;n=3) = (z^4 - 5*z^2 + 4),
  CFN1(z;n=4) = (z^6 - 14*z^4 + 49*z^2 - 36).
The first few generating functions GH(z;n) are
  GH(z;n=2) = (6*(z^2-1)*GH(z;n=1) + (-1)) / 9,
  GH(z;n=3) = (60*(z^4-5*z^2+4)*GH(z;n=1) + (51-10*z^2)) / 450,
  GH(z;n=4) = (1260*(z^6-14*z^4+49*z^2-36)*GH(z;n=1) + (-10594+2961*z^2-210*z^4))/99225.
		

Crossrefs

A160475 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A160477 equals the rows sums.
A160478 equals the p(n) sequence.
A160479 equals the ZL(n) sequence.
A001620 is the Euler-Mascheroni constant gamma.
The M(n-1) sequence equals A001316(n-1)/A156769(n) (n>=1).
The ZS1[ -1, n] and the Omega(n) coefficients lead to A002195 and A002196.
The CFN1(z, n) and the cfn1(n, k) lead to A008955.
Cf. The Eta, Beta and Lambda triangles A160464, A160480 and A160487.
Cf. A162446 (ZG1 matrix)

Programs

  • Maple
    nmax:=7; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do Zc(n) := (Omega(n)*2^(2*n-1))*2/((2*n+1)*(n)) end do: c(1) := denom(Zc(1)): for n from 2 to nmax do c(n) := lcm(c(n-1)*(n)*(2*n+1)/2, denom(Zc(n))); p(n) := c(n-1) end do: y(1):=Zc(1): for n from 1 to nmax-1 do y(n+1) := Zc(n+1) - ((2*n+2)/(2*n+3))*y(n) end do: for n from 1 to nmax do b(n) := 4^(-n)*(2*n+1)*n*denom(Omega(n)) end do: for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)*(1/6)* 4^n/(2*n+1)! end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: mmax := nmax: for n from 2 to nmax do ZETA(n, 1) := p(n)*y(n-1): ZETA(n, n) := 0 end do: for m from 2 to mmax do for n from m+1 to nmax do ZETA(n, m) := ZL(n)*(ZETA(n-1, m-1) - (n-1)^2* ZETA(n-1, m)) end do end do; seq(seq(ZETA(n,m), m=1..n-1), n=2..nmax);
    # End first program (program edited, Johannes W. Meijer, Sep 20 2012)
    nmax1 := 10; m := 1; ZS1row := 1-2*m; with(combinat): t1 := proc(n, k): sum((-1)^j * stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: mmax1 := nmax1: for m1 from 1 to mmax1 do M(m1-1) := 2^(2*m1-2)/((2*m1-1)!) end do: for m1 from 1 to mmax1 do ZS1[ -2*m1+1, 1] := 2*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do ZS1[-2*m1+1, n] := M(n-1)*sum((-1)^(k1+1)*t1(n-1, k1-1) * ZS1[2*k1-2*n-2*m1+1, 1], k1 = 1..n) od: od: seq(ZS1[1-2*m, n], n = 1..nmax1-m+1);
    # End second program (program edited, Johannes W. Meijer, Sep 20 2012)

Formula

We discovered a remarkable relation between the Zeta triangle coefficients ZETA(n,m) = ZL(n)*(ZETA(n-1,m-1)-(n-1)^2*ZETA(n-1,m)) for n = 3, 4, ... and m = 2, 3, .... See A160475 for ZETA(n,m=1) and furthermore ZETA(n,n) = 0 for n = 2, 3, ....
We observe that the ZL(n) = A160479(n) sequence also rules the Lambda triangle A160487.
The generating functions GH(z;n) of the coefficients in the matrix columns are defined by
GH(z;n) = sum(ZS1[2*m-1,n]*z^(2*m-2), m=1..infinity), with n = 1, 2, 3, .... This definition, and our choice of ZS1[1,1] = 2*gamma, leads to GH(z;n=1) = (-Psi(1-z)-Psi(1+z)) with Psi(z) the digamma-function. Furthermore we discovered that GH(z;n) = GH(z;n-1)*(2*z^2/((2*n-1)*(n-1))-(2*n-2)/(2*n-1))+2*ZS1[ -1,n-1]/((2*n-1)*(n-1)) for n = 2, 3 , ..., with ZS1[ -1,n] = 2^(2*n-1)*A002195(n)/A002196(n) for n = 1, 2, ....
We found the following general expression for the GH(z;n) polynomials, for n = 2, 3, ...:
GH(z;n) = (h(n)*CFN1(z;n)*GH(z;n=1) + ZETA(z;n))/p(n) with
h(n) = 6*A160476(n) and p(n) = A160478(n).

A160476 The first right hand column of the Zeta and Lambda triangles.

Original entry on oeis.org

1, 10, 210, 420, 4620, 60060, 60060, 2042040, 116396280, 581981400, 13385572200, 13385572200, 13385572200, 388181593800, 12033629407800, 24067258815600, 24067258815600, 890488576177200, 890488576177200
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

This intriguing sequence makes its appearance in the Zeta and Lambda triangles.
The first Maple algorithm is related to the Zeta triangle and the second to the Lambda triangle. Both generate the sequence of the first right hand column of these triangles.

Crossrefs

The Zeta and Lambda triangles are A160474 and A160487.
Appears in A162446 (ZG1 matrix) and A162448 (LG1 matrix) [Johannes W. Meijer, Jul 06 2009]

Programs

  • Maple
    nmax := 20; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 2 to nmax do Zc(n-1) := d(n-1)*2/((2*n-1)*(n-1)) end do: c(1) := denom(Zc(1)): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, denom(Zc(n+1))): p(n+1) := c(n) end do: for n from 2 to nmax do a1(n) := p(n)*2^(2*n-3)/(3*factorial(2*n-1)) od: seq(a1(n), n=2..nmax);
    # End first program (program edited, Johannes W. Meijer, Sep 20 2012)
    nmax1 := nmax: for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax1 do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1)/ (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax1 do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax1 do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax1 do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax1 do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax1 do a2(n) := p(n)/(6*factorial(2*n-2)) od: seq(a2(n), n=2..nmax1);
    # End second program (program edited, Johannes W. Meijer, Sep 20 2012)

Formula

a(n) = A160490(n)/(6*(2*n-2)!) for n = 2, 3, .. .
a(n) = A160478(n)*M(n) with M(n) = 2^(2*n-3)/(3*(2*n-1)!) for n=2, 3, .. .
M(n) = A048896(n-2)/(9*M1(n-1)) with M1(n) = (2*n+1)*A000265(n)*M1(n-1) for n = 2, 3, .. , and M1(1) = 1.
a(n+1)/a(n) = A160479(n+1) [Johannes W. Meijer, Oct 07 2009]

A217983 If n = floor(p/2) * p^e, for some (by necessity unique) prime p and exponent e > 0, then a(n) = p, otherwise a(n) = 1.

Original entry on oeis.org

1, 2, 3, 2, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Johannes W. Meijer, Oct 25 2012

Keywords

Comments

a(A130290(n) * A000040(n)^n1) = A000040(n), n >= 1 and n1 >= 1, and a(n) = 1 elsewhere. - The original name of the sequence.
The a(n) are related to the prime numbers A000040 and the number of nonzero quadratic residues modulo the n-th prime A130290, see the first formula and the Maple program.
This sequence resembles the exponential of the von Mangoldt function A014963; for the latter sequence a(A000040(n)^n1) = A000040(n), n >= 1 and n1 >= 1, and a(n) = 1 elsewhere.
Positions of the first occurrence of each successive noncomposite number (and also the records) is given by the union of {2} and A008837. - Antti Karttunen, Jan 17 2025

Crossrefs

Cf. A000079, A000244 (after their initial 1's, the positions of 2's and 3's respectively), A020699 (positions of 5's from its third term 10 onward), A169634 (positions of 7's from the second term onward), A379956 (positions of terms > 1).

Programs

  • Maple
    nmax := 78: A000040 := proc(n): ithprime(n) end: A130290 := proc(n): if n =1 then 1 else (A000040(n)-1)/2 fi: end: for n from 1 to nmax do A217983(n) := 1 od: for n from 1 to nmax do for n1 from 1 to floor(log[A000040(n)](nmax)) do A217983(A130290(n) * A000040(n)^n1) := A000040(n) od: od: seq(A217983(n), n=1..nmax);
  • PARI
    A217983(n) = { my(f=factor(n)); for(i=1,#f~,if((n/(f[i,1]^f[i,2])) == (f[i,1]\2), return(f[i,1]))); (1); }; \\ Antti Karttunen, Jan 16 2025

Formula

a(A130290(n) * A000040(n)^n1) = A000040(n), n >= 1 and n1 >= 1, and a(n)= 1 elsewhere.
a(n) = (A160479(n+1) * A128060(n+1))/(2*n+1) for n >= 2.

Extensions

Definition simplified, original definition moved to comments; more terms added by Antti Karttunen, Jan 16 2025

A128060 a(n) = 2*n - numerator((2*n-1)^2/(2*(2*n)!)).

Original entry on oeis.org

-1, 1, 1, 1, 1, 9, 1, 1, 15, 1, 1, 21, 1, 25, 27, 1, 1, 33, 35, 1, 39, 1, 1, 45, 1, 49, 51, 1, 55, 57, 1, 1, 63, 65, 1, 69, 1, 1, 75, 77, 1, 81, 1, 85, 87, 1, 91, 93, 95, 1, 99, 1, 1, 105, 1, 1, 111, 1, 115, 117, 119, 121, 123, 125, 1, 129, 1, 133, 135, 1, 1, 141, 143, 145, 147
Offset: 0

Views

Author

Paul Barry, Feb 13 2007

Keywords

Comments

Odd composite numbers with placeholders for primes between them.

Crossrefs

Programs

Formula

a(n) = 2*n - A128059(n).
a(n) = (A217983(n-1) * (2*n-1))/A160479(n) for n >= 3. - Johannes W. Meijer, Oct 25 2012
a(0) = -1, a(n) = gcd(2*n-1, (2*n-2)!), n > 0. - Wesley Ivan Hurt, Jan 05 2014

Extensions

More terms from Michel Marcus, May 23 2025
Showing 1-7 of 7 results.