cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A100215 Expansion of (4 - 7*x + 2*x^2)/((1-2*x)*(1 - 2*x + 2*x^2)).

Original entry on oeis.org

4, 9, 14, 18, 24, 44, 104, 248, 544, 1104, 2144, 4128, 8064, 16064, 32384, 65408, 131584, 263424, 525824, 1049088, 2095104, 4189184, 8382464, 16775168, 33562624, 67129344, 134242304, 268443648, 536838144
Offset: 0

Views

Author

Creighton Dement, Nov 11 2004

Keywords

Comments

a(n) = (-1)^n*A009116(n+3) + A100216(n) + A038503(n+1), where A009116, A100216 and A038503 can be generated by the operators jes, les and tes of the Floretion algebra, which is a product factor space Q x Q /{(1,1), (-1,-1)}.
Binomial transform of the sequence 4,5,0,-1 (repeated with period length 4). - R. J. Mathar, Apr 18 2009

Examples

			a(2) = 14 because (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)^3 = 1'j + 1'k + 1j' + 1k' + 3'ii' + 2'jj' + 2'kk' + 1'jk' + 1'kj' + 1e and the sum of these coefficients is 1 + 1 + 1 + 1 + 3 + 2 + 2 + 1 + 1 + 1 = 14 (see comment).
		

Crossrefs

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3).
a(n) = (-1)^n*A009116(n+3) + A100216(n) + A038503(n+1).
a(n) = vesseq(.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e), where ves sums over all floretion basis vector coefficients.
a(n) = 2^(n+1) + 2*A099087(n) + A099087(n-1). - R. J. Mathar, Apr 18 2009

Extensions

Definition replaced with the more precise g.f. by R. J. Mathar, Nov 17 2010

A100216 Relates row sums of Pascal's triangle to expansion of cos(x)/exp(x).

Original entry on oeis.org

1, 4, 9, 16, 26, 44, 84, 176, 376, 784, 1584, 3136, 6176, 12224, 24384, 48896, 98176, 196864, 393984, 787456, 1573376, 3144704, 6288384, 12578816, 25163776, 50335744, 100675584, 201342976, 402661376, 805289984, 1610563584, 3221159936
Offset: 0

Views

Author

Creighton Dement, Nov 11 2004

Keywords

Comments

A100215(n) (ves) = ((-1)^n)*A009116(n+3) (jes) + a(n) (les) + A038503(n+1) (tes) (Sn, below, corresponds to the generating function from above). Coefficients of Sn(z)*(1-z)/(1+z) gives match to A038504 (Sum of every 4th entry of row n in Pascal's triangle, starting at "n choose 1"). Coefficients of Sn(z)/(1+z) gives match to A038505 (Sum of every 4th entry of row n in Pascal's triangle, starting at "n choose 2"). Coefficients of Sn(z)/(1-z^2) gives match to A000749 (Number of strings over Z_2 of length n with trace 1 and subtrace 1). The elements 'i, 'j, 'k, i', j', k', 'ii', 'jj', 'kk', 'ij', 'ik', 'ji', 'jk', 'ki', 'kj', e ("floretions") are members of the quaternion product factor space Q x Q /{(1,1), (-1,-1)}. "les" sums over coefficients belonging to basis vectors which squared give the unit e (excluding e itself).
This sequence is identical to its 4th differences. - Jean-François Alcover, Nov 07 2013

Examples

			a(2) = 9 because (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)^3 =
1'j + 1'k + 1j' + 1k' + 3'ii' + 2'jj' + 2'kk' + 1'jk' + 1'kj' + 1e
and the sum of the coefficients belonging to basis vectors which squared give the unit e (excluding e itself) is 3+2+2+1+1 = 9 (see comment).
		

Crossrefs

Programs

  • Magma
    [n le 3 select n^2 else 4*Self(n-1) -6*Self(n-2) +4*Self(n-3): n in [1..40]]; // G. C. Greubel, Mar 28 2024
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <4|-6|4>>^n. <<1, 4, 9>>)[1, 1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 07 2013
  • Mathematica
    d = 4; nmax = 31; a[n_ /; n < d] := (n + 1)^2; seq = Table[a[n], {n, 0, nmax}]; seq /. Solve[ Thread[ Take[seq, nmax - d + 1] == Differences[seq, d]]] // First (* Jean-François Alcover, Nov 07 2013 *)
    LinearRecurrence[{4,-6,4}, {1,4,9}, 41] (* G. C. Greubel, Mar 28 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A100216
        if n<3: return (n+1)^2
        else: return 4*a(n-1) -6*a(n-2) +4*a(n-3)
    [a(n) for n in range(41)] # G. C. Greubel, Mar 28 2024

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), with a(0) = 1, a(1) = 4, a(2) = 9.
G.f.: (1-x^2)/((1-2*x)*(1-2*x+2*x^2)).
(a(n)) = lesseq(.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e).
2*a(n) = 3*2^n - A009545(n+1) + 4*A009545(n). - R. J. Mathar, May 21 2019
E.g.f.: (1/2)*exp(x)*(3*sin(x) - cos(x) + 3*exp(x)). - G. C. Greubel, Mar 28 2024

A120743 a(n) = (1/2)*(1 + 3*i)^n + (1/2)*(1 - 3*i)^n where i = sqrt(-1).

Original entry on oeis.org

1, -8, -26, 28, 316, 352, -2456, -8432, 7696, 99712, 122464, -752192, -2729024, 2063872, 31417984, 42197248, -229785344, -881543168, 534767104, 9884965888, 14422260736, -70005137408, -284232882176, 131585609728, 3105500041216
Offset: 1

Views

Author

Creighton Dement, Jun 11 2007

Keywords

Comments

From R. J. Mathar, Jun 15 2007: (Start)
These are the row sums of the triangle A013610 after every 2nd column is deleted, then every 2nd column reversed in sign, creating an intermediate irregular triangle with entries C(n,2*k)*(-9)^k, k = 0..floor(n/2):
1;
1, -9;
1, -27;
1, -54, 81;
1, -90, 405;
1, -135, 1215, -729;
1, -189, 2835, -5103;
1, -252, 5670, -20412, 6561;
1, -324, 10206, -61236, 59049;
1, -405, 17010, -153090, 295245, -59049; (End)
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[A*B] with A = + 1.5i' + .5j' + .5k' + .5e and B = 'ji' + e

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select -8 else 2*Self(n-1) -10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 24 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {1,-8}, 30] (* G. C. Greubel, Nov 09 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-10*x)/(1-2*x+10*x^2)) \\ G. C. Greubel, Nov 09 2018

Formula

a(n) = 2*a(n-1) - 10*a(n-2).
G.f.: x*(1-10*x)/(10*x^2 - 2*x + 1).
a(n) mod 9 = 1. - Paul Curtz, Apr 20 2011
G.f.: G(0)/(2*x) - 1/x, where G(k) = 1 + 1/(1 - x*(9*k+1)/(x*(9*k+10) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
E.g.f.: exp(x)*cos(3*x). - Sergei N. Gladkovskii, May 29 2013
a(n) = A190958(n)-10*A190958(n-1). - R. J. Mathar, Dec 13 2022

Extensions

a(0)=1: a(n) is main diagonal of A009116(n). - Paul Curtz, Jul 22 2011
Edited by Jon E. Schoenfield, Nov 09 2018

A100212 Expansion of 4*x^4*(2 + x)/(1 - 2*x + 2*x^2 - 4*x^4 + 8*x^5 - 8*x^6).

Original entry on oeis.org

0, 0, 0, 0, 8, 20, 24, 8, 0, 0, 0, 0, 128, 320, 384, 128, 0, 0, 0, 0, 2048, 5120, 6144, 2048, 0, 0, 0, 0, 32768, 81920, 98304, 32768, 0, 0, 0, 0, 524288, 1310720, 1572864, 524288, 0, 0, 0, 0, 8388608, 20971520, 25165824, 8388608, 0, 0, 0, 0, 134217728, 335544320
Offset: 0

Views

Author

Creighton Dement, Nov 08 2004

Keywords

Comments

a(n) = 0 iff n == {0, 1, 2 or 3} (mod 8). - Robert G. Wilson v, Nov 12 2004

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0] cat Coefficients(R!( 4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6) )); // G. C. Greubel, Apr 01 2024
    
  • Mathematica
    CoefficientList[ Series[4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6), {x, 0, 55}], x] (* Robert G. Wilson v, Nov 12 2004 *)
    LinearRecurrence[{2,-2,0,4,-8,8},{0,0,0,0,8,20},60] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    Vec(4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • SageMath
    def A100212_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6) ).list()
    A100212_list(60) # G. C. Greubel, Apr 01 2024

Formula

a(8n+4) = a(8n+7) = 2^(4n+3), a(8n+5) = (5/2)*2^(4n+3), a(8n+6) = 3*2^(4n+3), a(8n+8) = 0, a(8n+9) = 0, a(8n+10) = 0, a(8n+11) = 0.
(a(n)) = negseq(.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=8, a(5)=20, a(n) = 2*a(n-1) - 2*a(n-2) + 4*a(n-4) - 8*a(n-5) + 8*a(n-6). - Harvey P. Dale, Oct 10 2012

Extensions

More terms from Robert G. Wilson v, Nov 12 2004

A108086 Triangle, read by rows, where T(0,0) = 1, T(n,k) = (-1)^(n+k)*T(n-1,k) + T(n-1,k-1); a signed version of Pascal's triangle.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, 1, -3, -3, 1, 1, 4, -6, -4, 1, -1, 5, 10, -10, -5, 1, -1, -6, 15, 20, -15, -6, 1, 1, -7, -21, 35, 35, -21, -7, 1, 1, 8, -28, -56, 70, 56, -28, -8, 1, -1, 9, 36, -84, -126, 126, 84, -36, -9, 1, -1, -10, 45, 120, -210, -252, 210, 120, -45, -10, 1, 1, -11, -55, 165, 330, -462, -462, 330, 165, -55, -11, 1
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Crossrefs

Programs

  • Magma
    A108086:= func< n,k | (-1)^Floor((n-k+1)/2)*Binomial(n,k) >;
    [A108086(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2022
    
  • Mathematica
    A108086[n_, k_]:= (-1)^(Floor[(n-k+1)/2])*Binomial[n, k];
    Table[A108086[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2022 *)
  • SageMath
    def A108086(n,k): return (-1)^int((n-k+1)/2)*binomial(n,k)
    flatten([[A108086(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 02 2022

Formula

T(n,k) = (-1)^(n+k)*T(n-1,k) + T(n-1,k-1), with T(0, 0) = 1.
T(n, k) = (-1)^floor((n-k+1)/2) * A007318(n, k).
From G. C. Greubel, Dec 02 2022: (Start)
T(2*n, n) = (-1)^binomial(n+1,2) * A000984(n).
T(2*n, n+1) = (-1)^binomial(n,2) * A001791(n), n >= 1.
T(2*n, n-1) = (-1)^binomial(n+2,2) * A001791(n).
T(2*n+1, n-1) = (-1)^binomial(n-1,2) * A002054(n).
T(2*n+1, n+1) = (-1)^binomial(n+1,2) * A001700(n+1).
Sum_{k=0..n} T(n, k) = (-1)^n * A090132(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A108520(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n * A260192(n-1).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A333378(n+1). (End)

A133212 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3; a(0) = 1, a(1) = 4, a(2) = 12, a(3) = 32.

Original entry on oeis.org

1, 4, 12, 32, 72, 144, 272, 512, 992, 1984, 4032, 8192, 16512, 33024, 65792, 131072, 261632, 523264, 1047552, 2097152, 4196352, 8392704, 16781312, 33554432, 67100672, 134201344, 268419072, 536870912, 1073774592, 2147549184
Offset: 0

Views

Author

Paul Curtz, Oct 11 2007

Keywords

Comments

Conjecture: a(n) = 2*A038503(n+3) if n > 0. - R. J. Mathar, Oct 23 2007

Crossrefs

Programs

  • Maple
    A133212 := proc(n) option remember ; if n <= 3 then op(n+1,[1,4,12,32]) ; else 4*A133212(n-1)-6*A133212(n-2)+4*A133212(n-3) ; fi ; end: seq(A133212(n),n=0..50) ; # R. J. Mathar, Oct 23 2007
  • Mathematica
    Join[{1},LinearRecurrence[{4, -6, 4},{4, 12, 32},29]] (* Ray Chandler, Sep 23 2015 *)

Formula

Sequence is identical to its fourth differences.
From R. J. Mathar, Nov 18 2007: (Start)
G.f.: -(1 + 2*x^2 + 4*x^3)/((2*x - 1)*(2*x^2 - 2*x + 1)). - [Corrected by Georg Fischer, May 12 2019]
a(n) = -2*(-1)^n*A009116(n)+3*2^n. (End)
E.g.f.: exp(x)*(3*cosh(x) - 2*(cos(x) + sin(x)) + 5*sinh(x)). - Stefano Spezia, Jan 03 2023

Extensions

More terms from R. J. Mathar, Oct 23 2007

A134813 a(n) = b(n+1)-2b(n) where b() is A134812.

Original entry on oeis.org

1, -3, 3, 0, -6, 12, -12, 0, 24, -48, 48, 0, -96, 192, -192, 0, 384, -768, 768, 0, -1536, 3072, -3072, 0, 6144, -12288, 12288, 0, -24576, 49152, -49152, 0, 98304, -196608, 196608, 0, -393216, 786432, -786432, 0, 1572864, -3145728, 3145728, 0, -6291456
Offset: 0

Views

Author

Paul Curtz, Jan 28 2008

Keywords

Crossrefs

Cf. A003945.

Programs

  • Mathematica
    LinearRecurrence[{-2,-2},{1,-3,3},50] (* Harvey P. Dale, Mar 22 2018 *)

Formula

G.f. 1 -3*x*(1+x) / ( 1+2*x+2*x^2 ). - R. J. Mathar, Aug 11 2012
a(n) = -3*A009116(n-1), n>0. - R. J. Mathar, Aug 11 2012

Extensions

More terms from Harvey P. Dale, Mar 22 2018

A138231 A009545 alternated with its first differences.

Original entry on oeis.org

0, 1, 1, 1, 2, 0, 2, -2, 0, -4, -4, -4, -8, 0, -8, 8, 0, 16, 16, 16, 32, 0, 32, -32, 0, -64, -64, -64, -128, 0, -128, 128, 0, 256, 256, 256, 512, 0, 512, -512, 0, -1024, -1024, -1024, -2048, 0, -2048, 2048, 0, 4096, 4096, 4096, 8192, 0, 8192, -8192, 0, -16384, -16384
Offset: 0

Views

Author

Paul Curtz, May 05 2008

Keywords

Comments

The unsigned sequence contains 3 copies of the strictly positive powers of 2.

Crossrefs

Cf. A000079.

Programs

  • Mathematica
    With[{c=LinearRecurrence[{2,-2},{0,1},40]},Riffle[c,Differences[c]]] (* or *) LinearRecurrence[{0,2,0,-2},{0,1,1,1},80] (* Harvey P. Dale, Oct 15 2017 *)

Formula

a(2n)= A009545(n). a(2n+1)= A009545(n+1)-A009545(n) = (-1)^(n+1)*A009116(n).
a(n) = 2a(n-2)-2a(n-4). a(n) = -4a(n-8), n > 7.
O.g.f.: x(1+x-x^2)/(1-2x^2+2x^4). - R. J. Mathar, Jul 08 2008

Extensions

Edited by R. J. Mathar, Jul 08 2008

A009769 Expansion of tanh(log(1+1/x)).

Original entry on oeis.org

1, 0, -4, 24, -96, 0, 5760, -80640, 645120, 0, -116121600, 2554675200, -30656102400, 0, 11158821273600, -334764638208000, 5356234211328000, 0, -3278015337332736000, 124564582818643968000, -2491291656372879360000, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 26; Range[0, nn]! CoefficientList[Series[Tanh[Log[1 + 1/x]], {x, 0, nn}], x] (* T. D. Noe, Oct 05 2011 *)

Formula

E.g.f.: (2*x+1)/(2*x^2+2*x+1) = 1-4*x^2/2!+24*x^3/3!-96*x^4/4!+....
Recurrence: a(n) = -2*n*a(n-1)-2*n*(n-1)*a(n-2), a(0) = 1, a(1) = 0.
a(n) = -n!/2*((-1+i)^(n+1) + (-1-i)^(n+1)) = -n!*sqrt(2)^(n+1)* cos(3*Pi*(n+1)/4).
a(n) = 2^n*A009014(n). a(n) = -n!*A009116(n+1).
For x > -1/2 we have (2*x+1)/(2*x^2+2*x+1) = 2*int {t = 0..inf} exp(-t*(2*x+1))*cos(t). Using this we obtain a(n) = 2*(-2)^n*int {t = 0..inf} t^n*exp(-t)*cos(t). - Peter Bala, Oct 05 2011

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A133209 a(n) = 4a(n-1) - 6a(n-2) + 4a(n-3), n > 3; a(0) = 3, a(1) = 2, a(2) = a(3) = 0.

Original entry on oeis.org

3, 2, 0, 0, 8, 32, 80, 160, 288, 512, 960, 1920, 3968, 8192, 16640, 33280, 66048, 131072, 261120, 522240, 1046528, 2097152, 4198400, 8396800, 16785408, 33554432, 67092480, 134184960, 268402688, 536870912, 1073807360, 2147614720
Offset: 0

Views

Author

Paul Curtz, Oct 11 2007

Keywords

Crossrefs

Programs

  • Maple
    a[0]:=3: a[1]:=2: a[2]:=0: a[3]:=0; for n from 4 to 27 do a[n]:=4*a[n-1]-6*a[n-2]+4*a[n-3] end do: seq(a[n],n=0..27); # Emeric Deutsch, Oct 14 2007
  • Mathematica
    a = {3, 2, 0, 0}; Do[AppendTo[a, 4*a[[ -1]] - 6*a[[ -2]] + 4*a[[ -3]]], {30}]; a (* Stefan Steinerberger, Oct 14 2007 *)
    LinearRecurrence[{4, -6, 4},{3, 2, 0},32] (* Ray Chandler, Sep 23 2015 *)

Formula

Sequence is identical to its fourth differences.
a(n) = 2^n + 2^[(n+3)/2]*cos((n+1)Pi/4); a(n)=2^n + (1+i)^(n+1) + (1-i)^(n+1), where i=sqrt(-1). - Emeric Deutsch, Oct 14 2007
G.f.: -(3-10*x+10*x^2)/(2*x-1)/(2*x^2-2*x+1). - R. J. Mathar, Nov 14 2007

Extensions

More terms from Stefan Steinerberger and Emeric Deutsch, Oct 14 2007
Previous Showing 21-30 of 34 results. Next