cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A165665 a(n) = (3*2^n - 2) * 2^n.

Original entry on oeis.org

1, 8, 40, 176, 736, 3008, 12160, 48896, 196096, 785408, 3143680, 12578816, 50323456, 201310208, 805273600, 3221159936, 12884770816, 51539345408, 206157905920, 824632672256, 3298532786176, 13194135339008, 52776549744640
Offset: 0

Views

Author

Klaus Brockhaus, Sep 24 2009

Keywords

Comments

Binomial transform of A058481. Second binomial transform of (A082505 without initial term 0). Third binomial transform of A010686.
Partial sums are in A060867.
a(n) is the sum of the odd numbers taken progressively by moving through them by 2^n-tuples. a(0)=1; a(1) = 3+5=8; a(2) = 7+9+11+13 = 40; a(3) = 15+17+19+21+23+25+27+29 = 176; a(n) = sum_{k=0,1,..,A000225(n)} (A000225(n+1)+2*k). - J. M. Bergot, Dec 06 2014
The number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016

Crossrefs

Cf. A058481, A082505, A010686 (repeat 1, 5), A060867, A010036, A124647.

Programs

  • Magma
    [ (3*2^n-2)*2^n: n in [0..23] ];
    
  • Mathematica
    Table[(3*2^n-2)2^n,{n,0,30}] (* or  *) LinearRecurrence[{6,-8},{1,8},30] (* Harvey P. Dale, Nov 18 2020 *)
  • PARI
    a(n)=(3*2^n-2)*2^n \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 6*a(n-1)-8*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
a(n) = 8*A010036(n-1) for n > 0.
G.f.: (2*x+1)/((1-2*x)*(1-4*x)).
E.g.f.: 3*e^(4*x) - 2*e^(2*x). - Robert Israel, Dec 15 2014

A125185 Triangle read by rows: T(n,k) is the coefficient of t^k in the polynomial S(n,t)=[(1+t)(2+t)^n+(1-t)t^n]/2 (0<=k<=n).

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 4, 10, 9, 4, 8, 24, 28, 16, 5, 16, 56, 80, 60, 25, 6, 32, 128, 216, 200, 110, 36, 7, 64, 288, 560, 616, 420, 182, 49, 8, 128, 640, 1408, 1792, 1456, 784, 280, 64, 9, 256, 1408, 3456, 4992, 4704, 3024, 1344, 408, 81, 10, 512, 3072, 8320, 13440, 14400
Offset: 0

Views

Author

Emeric Deutsch, Dec 04 2006

Keywords

Comments

Sum of terms in row n = 3^n. The polynomials S(n,t) can be defined recursively by S(0,t)=1, S(n,t)=t^n - t^(n-1) + (2+t)S(n-1,t) for n>=1. S(n,t)=Sum(B(j,t), j=2^n .. 2^(n+1)-1), where B(n,t) are the Stern polynomials, defined by B(0,t)=0, B(1,t)=1, B(2n,t)=tB(n,t), B(2n+1,t)=B(n+1,t)+B(n,t) for n>=1 (see S. Klavzar et al. and A125184). For example, S(2,t)=B(4,t)+B(5,t)+B(6,t)+B(7,t).
Subtriangle of (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012

Examples

			Triangle starts:
  1;
  1,2;
  2,4,3;
  4,10,9,4;
  8,24,28,16,5;
  16,56,80,60,25,6;
Triangle (0,1,1,0,0,0,...) DELTA (1,1,-1,1,0,0,0,0,...) begins:
  1
  0, 1
  0, 1, 2
  0, 2, 4, 3
  0, 4, 10, 9, 4
  0, 8, 24, 28, 16, 5
  0, 16, 56, 80, 60, 25, 6
		

Crossrefs

Cf. A125184.

Programs

  • Maple
    T:=proc(n,k) if k
    				

Formula

T(n,k)=2^(n-k-1)*(n+k+1)binomial(n,k)/(n-k+1) if k
G.f.: (1-x)/((1-y*x)*(1-(y+2)*x)). - Philippe Deléham, Feb 26 2012
Recurrence : T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2) with T(0,0) = T(1,0) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 26 2012
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A011782(n), A000244(n), A010036(n), A081625(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Feb 26 2012

A167993 Expansion of x^2/((3*x-1)*(3*x^2-1)).

Original entry on oeis.org

0, 0, 1, 3, 12, 36, 117, 351, 1080, 3240, 9801, 29403, 88452, 265356, 796797, 2390391, 7173360, 21520080, 64566801, 193700403, 581120892, 1743362676, 5230147077, 15690441231, 47071500840, 141214502520, 423644039001, 1270932117003, 3812797945332, 11438393835996
Offset: 0

Author

Paul Curtz, Nov 16 2009

Keywords

Comments

The terms satisfy a(n) = 3*a(n-1) +3*a(n-2) -9*a(n-3), so they follow the pattern a(n) = p*a(n-1) +q*a(n-2) -p*q*a(n-3) with p=q=3. This could be called the principal sequence for that recurrence because we have set all but one of the initial terms to zero. [p=q=1 leads to the principal sequence A004526. p=q=2 leads essentially to A032085. The common feature is that the denominator of the generating function does not have a root at x=1, so the sequences of higher order successive differences have the same recurrence as the original sequence. See A135094, A010036, A006516.]

Crossrefs

Cf. A138587, A107767 (partial sums).

Programs

  • Mathematica
    CoefficientList[Series[x^2/((3*x - 1)*(3*x^2 - 1)), {x, 0, 50}], x] (* G. C. Greubel, Jul 03 2016 *)
    LinearRecurrence[{3,3,-9},{0,0,1},30] (* Harvey P. Dale, Nov 05 2017 *)
  • PARI
    Vec(x^2/((3*x-1)*(3*x^2-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 29 2011

Formula

a(2*n+1) = 3*a(2*n).
a(2*n) = A122006(2*n)/2.
a(n) = 3*a(n-1) + 3*a(n-4) - 9*a(n-3).
a(n+1) - a(n) = A122006(n).
a(n) = (3^n - A108411(n+1))/6.
G.f.: x^2/((3*x-1)*(3*x^2-1)).
From Colin Barker, Sep 23 2016: (Start)
a(n) = 3^(n-1)/2-3^(n/2-1)/2 for n even.
a(n) = 3^(n-1)/2-3^(n/2-1/2)/2 for n odd.
(End)

Extensions

Formulae corrected by Johannes W. Meijer, Jun 28 2011

A171496 a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 6, a(1) = 28.

Original entry on oeis.org

6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
Offset: 0

Author

Klaus Brockhaus, Dec 10 2009

Keywords

Comments

Binomial transform of A171495; second binomial transform of A171494; third binomial transform of A010726.

Crossrefs

Programs

  • Magma
    [8*4^n-2*2^n: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
  • Mathematica
    LinearRecurrence[{6,-8},{6,28},30] (* Harvey P. Dale, Dec 21 2014 *)
  • PARI
    {m=22; v=concat([6, 28], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
    

Formula

a(n) = 8*4^n - 2*2^n.
G.f.: 2*(3-4*x)/((1-2*x)*(1-4*x)).
a(n) = A171476(n+1) = A006516(n+2).
a(n+1) - a(n) = A010036(n+2).
a(n) = 4*a(n-1)+2^(n+1) (with a(0)=6). - Vincenzo Librandi, Dec 04 2010
E.g.f.: 2*exp(2*x)*(2*exp(2*x) - 1)*(2*exp(2*x) + 1). - Stefano Spezia, Dec 10 2021

A266214 Numbers n that are not coprime to the numerator of zeta(2*n)/(Pi^(2*n)).

Original entry on oeis.org

14, 22, 26, 28, 30, 38, 42, 44, 46, 50, 52, 54, 56, 58, 60, 62, 70, 74, 76, 78, 82, 84, 86, 88, 90, 92, 94, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 134, 138, 140, 142, 146, 148, 150, 152, 154, 156, 158, 162, 164, 166, 168, 170
Offset: 1

Author

Chris Boyd, Robert Israel, Dec 24 2015

Keywords

Comments

Equivalently, n not coprime to the numerator of 2^(2n-1)*Bernoulli(2n)/(2n)! (see Lekraj Beedassy comment in A046988).
Conjecture 1: for n>=1, a(n) is identical to 2*A072823(n+1).
Conjecture 2: The corresponding GCDs are powers of 2.
Verified for n <= 10000, e.g.,
GCD = 2 for 14, 22, 26, 28, 30, 38, 42, 44, 46, 50, 52, 54, 56, 58, ...
GCD = 4 for 60, 92, 108, 116, 120, 124, 156, 172, 180, 184, 188, ...
GCD = 8 for 248, 376, 440, 472, 488, 496, 504, 632, 696, 728, 744, ...
GCD = 16 for 1008, 1520, 1776, 1904, 1968, 2000, 2016, 2032, 2544, ...
GCD = 32 for 4064, 6112, 7136, 7648, 7904, 8032, 8096, 8128, 8160
Taking GCDs vertically, column 1 = "14, 60, 248, 1008, 4064, ..." appears to be essentially the same as A171499 and A131262; (ii) column 2 = "22, 92, 376, 1520, 6112, ..." appears to be essentially the same as A010036.
From Chris Boyd, Jan 25 2016: (Start)
Determining whether n is a term of this sequence can be approached by considering odd and even factors separately, and exploiting the fact that numerator(zeta(2n)/(Pi^(2n))) = numerator(2^(2n-2)*N_2n/(D_2n*(2n)!)), where N_2n and D_2n are odd coprime integers such that Bernoulli(2n) = N_2n/2D_2n.
Case 1: odd factors. n is a term if it has an odd prime factor p (necessarily irregular) that divides N_2n at a higher multiplicity than it divides (2n)!. No such factor p of N_2n up to 2n = 10000 is of sufficient multiplicity, and the apparent scarcity of squared and higher power factors of N_2n values (see A090997) suggests that no such p is likely to exist.
Case 2: even factors. An even n is a term if 2 divides 2^(2n-2) at a higher multiplicity than it divides (2n)!. The multiplicity of 2 in 2^(2n-2) is 2n-2, and in (2n)! is 2n minus the number of 1's in the binary expansion of 2n (see A005187). Qualifying n values are therefore those where the number of 1's in the binary expansion of 2n is greater than 2. Except for its first term, A072823 comprises integers with three or more 1-bits in their binary expansion. It follows that for m > 1, 2*A072823(m) values belong to this sequence.
In summary, this sequence is essentially a supersequence of 2*A072823. Conjectures 1 and 2 are true if there are no irregular odd primes p that divide n and the numerator of Bernoulli(2n)/(2n)!. (End)

Crossrefs

Programs

  • Maple
    select(n -> igcd(n,numer(2^(2*n-1)*bernoulli(2*n)/(2*n)!)) > 1), [$1..1000]);
  • Mathematica
    Select[Range@ 170, ! CoprimeQ[#, Numerator[Zeta[2 #]/Pi^(2 #)]] &] (* Michael De Vlieger, Dec 24 2015 *)
  • PARI
    test(n) = if(gcd(numerator(2^(2*n-1)*bernfrac(2*n)/(2*n)!),n)!=1,1,0)
    for(i=1,200,if(test(i),print1(i,", ")))

A087079 Number of lunar partitions of n: number of ways of writing n as a lunar sum of distinct terms, ignoring order.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 5, 22, 92, 376, 1520, 6112, 24512, 98176, 392960, 2, 22, 200, 1696, 13952, 113152, 911360, 7315456, 58621952, 469368832, 4, 92, 1696, 28928, 477184, 7749632, 124911616, 2005925888, 32153534464, 514926313472, 8
Offset: 0

Author

Marc LeBrun, Oct 09 2003

Keywords

Comments

Without the condition that the numbers are distinct the answers are infinite because 1+1+1+...+1 = 1 in lunar arithmetic - see A087061.

Examples

			a(5) = 16: we can write 5 = 5 + any subset of {4, 3, 2, 1} (16 ways).
a(12) = 22: we can write 12 = 12 + any subset of {11, 10, 2, 1} (16 ways), 12 = 2 + 11 + 10 = 2 + 11 = 2 + 10 and those three with 1 added (6 ways).
		

Crossrefs

Cf. A010036.
The subsequence a(n) where n = 111..11 is A003465. - N. J. A. Sloane, May 21 2011

Programs

  • PARI
    A087079(n) = { my(v, r = 0, i, j, b); v = select(x -> x != 0, digits(n)); for (i = 0, 2^#v - 1, b = Vecrev(binary(i)); b = vector(#v, i, if (i <= #b, b[i], 0)); r += (-1)^vecsum(b) * 2^prod(j = 1, #v, if (b[j] == 1, v[j], v[j] + 1)); ); r/2;} /* Jerome Raulin, Feb 15 2017 */

Formula

For 1 <= a < 10 and 0 <= b < 10, a(10a+b) = 2^(ab+a+b-1)+(2^a-1)(2^b-1)2^(ab-1). - David Wasserman, Apr 14 2005

Extensions

More terms from David Wasserman, Apr 14 2005

A093357 Number of occurrences of pattern 2-1 after n iterations of morphism A007413.

Original entry on oeis.org

0, 4, 20, 88, 368, 1504, 6080, 24448, 98048, 392704, 1571840, 6289408, 25161728, 100655104, 402636800, 1610579968, 6442385408, 25769672704, 103078952960, 412316336128, 1649266393088, 6597067669504, 26388274872320
Offset: 1

Author

Ralf Stephan, Apr 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[(3*4^(n-1)-2^n)/2,{n,2,30}]] (* or *) Join[{0}, LinearRecurrence[{6,-8},{4,20},30]] (* Harvey P. Dale, Apr 04 2012 *)
  • PARI
    a(n)=if(n==1,0,(3*4^(n-1)-2^n)/2)

Formula

a(1) = 0, a(n) = (3*4^(n-1) - 2^n)/2.
G.f.: 4*x*(1-x)/((1-2*x)*(1-4*x)).
a(1)=0, a(2)=4, a(3)=20, a(n)=6*a(n-1)-8*a(n-2). - Harvey P. Dale, Apr 04 2012
a(n) = 4*A010036(n-2). - R. J. Mathar, Apr 07 2022

A109765 Expansion of x/((4*x-1)*(2*x-1)*(x+1)).

Original entry on oeis.org

0, 1, 5, 23, 97, 399, 1617, 6511, 26129, 104687, 419089, 1677039, 6709521, 26840815, 107368721, 429485807, 1717965073, 6871903983, 27487703313, 109950988015, 439804301585, 1759217905391, 7036873019665, 28147494874863
Offset: 0

Author

Creighton Dement, Aug 13 2005

Keywords

Comments

In reference to the program code given, 1baseksumseq[C*D] = A001045 (Jacobsthal sequence, disregard signs).
Floretion Algebra Multiplication Program, FAMP Code: 1basejsumseq[C*D] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and D = + .5'i + .5'k - .5j' - .5k' + .5'ii' + .5'jj' + .5'jk' + .5'ki'; sumtype: sum[Y[15]] = sum[Y[ * ]], disregard signs

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x/((4x-1)(2x-1)(x+1)),{x,0,30}],x] (* or *)
    LinearRecurrence[{5,-2,-8},{0,1,5},30] (* Harvey P. Dale, Jan 02 2013 *)

Formula

a(n) = 5*a(n-1) - 2*a(n-2) - 8*a(n-3), n >= 3.
a(n) = (1/15)*(6*4^n-5*2^n-(-1)^n).
a(n+1) + a(n) = A006516(n+1).
a(n+2) - a(n) = A010036(n+1).

A121544 Sum of all proper base 4 numbers with n digits (those not beginning with 0).

Original entry on oeis.org

6, 114, 1896, 30624, 491136, 7862784, 125822976, 2013241344, 32212156416, 515395682304, 8246335635456, 131941389041664, 2111062300164096, 33776997104615424, 540431954881806336, 8646911282940739584, 138350580546379186176, 2213609288819376390144
Offset: 1

Author

Jonathan Vos Post, Sep 08 2006

Keywords

Comments

Sum of the first 3 * 4^(n-1) integers starting with 4^(n-1).
Sum of the integers from 4^(n-1) to 4^n -1.
First differences of A026337.

Examples

			a(1) = 6 = 1 + 2 + 3.
a(2) = 114 = 10_4 + 11_4 + 12_4 + 13_4 + 20_4 + 21_4 + 22_4 + 23_4 + 30_4 + 31_4 + 32_4 + 33_4 = (4+5+6+7+8+9+10+11+12+13+14+15)_10.
		

Crossrefs

Programs

  • Magma
    [3*Binomial(5*4^(n-1), 2)/5: n in [1..20]]; // G. C. Greubel, Nov 07 2024
    
  • Mathematica
    Table[3*4^(n-1)*(5*4^(n-1) - 1)/2, {n,20}] (* James C. McMahon, Oct 19 2024 *)
  • SageMath
    def A121544(n): return 3*binomial(5*4^(n-1), 2)//5
    [A121544(n) for n in range(1,21)] # G. C. Greubel, Nov 07 2024

Formula

a(n) = 3 * 4^(n-1) * (4^(n-1) + 4^n - 1)/2.
G.f.: 6*x*(1-x) / ((1-4*x)*(1-16*x)). - Colin Barker, Apr 30 2013
From G. C. Greubel, Nov 07 2024: (Start)
a(n) = (3/5)*binomial(5*4^(n-1), 2).
E.g.f.: (3/32)*(-1 - 4*exp(4*x) + 5*exp(16*x)). (End)

Extensions

More terms from Colin Barker, Apr 30 2013
Edited by Michel Marcus, Apr 15 2024

A226508 a(n) = Sum_{i=3^n..3^(n+1)-1} i.

Original entry on oeis.org

3, 33, 315, 2889, 26163, 235953, 2125035, 19129689, 172180323, 1549662273, 13947078555, 125524061289, 1129717614483, 10167461718993, 91507165036875, 823564514029689, 7412080712360643, 66708726669526113, 600378540800575995, 5403406869529706889
Offset: 0

Author

Michel Marcus, Jun 10 2013

Keywords

Comments

Partial sums give 3, 36, 351, 3240, 29403,...: A026121.
a(n) is the sum of all integers having n+1 digits in their ternary expansion (without leading zeros). - Jonathan Vos Post, Sep 07 2006

Examples

			a(0) = 1+2 = 3,
a(1) = 3+4+5+6+7+8 = 33.
		

Crossrefs

Cf. A010035, A010036 (base 2), A026121, A101291 (base 10).
Cf. A007089 (numbers in base 3).

Programs

  • Mathematica
    Table[3^(n - 1) (4 3^(n + 1) - 3), {n, 0, 20}] (* Bruno Berselli, Jun 11 2013 *)
    LinearRecurrence[{12,-27},{3,33},30] (* Harvey P. Dale, Jun 19 2013 *)
  • PARI
    a(n) = sum(i=3^n, 3^(n+1)-1, i) \\ Michel Marcus, Jun 11 2013

Formula

G.f.: 3*(1-x)/(1-12*x+27*x^2). [Bruno Berselli, Jun 11 2013]
a(n) = 3^(n-1)*(4*3^(n+1)-3). [Bruno Berselli, Jun 11 2013]
a(0)=3, a(1)=33, a(n)=12*a(n-1)-27*a(n-2). - Harvey P. Dale, Jun 19 2013
Previous Showing 11-20 of 26 results. Next