A165665
a(n) = (3*2^n - 2) * 2^n.
Original entry on oeis.org
1, 8, 40, 176, 736, 3008, 12160, 48896, 196096, 785408, 3143680, 12578816, 50323456, 201310208, 805273600, 3221159936, 12884770816, 51539345408, 206157905920, 824632672256, 3298532786176, 13194135339008, 52776549744640
Offset: 0
-
[ (3*2^n-2)*2^n: n in [0..23] ];
-
Table[(3*2^n-2)2^n,{n,0,30}] (* or *) LinearRecurrence[{6,-8},{1,8},30] (* Harvey P. Dale, Nov 18 2020 *)
-
a(n)=(3*2^n-2)*2^n \\ Charles R Greathouse IV, Oct 07 2015
A125185
Triangle read by rows: T(n,k) is the coefficient of t^k in the polynomial S(n,t)=[(1+t)(2+t)^n+(1-t)t^n]/2 (0<=k<=n).
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 4, 10, 9, 4, 8, 24, 28, 16, 5, 16, 56, 80, 60, 25, 6, 32, 128, 216, 200, 110, 36, 7, 64, 288, 560, 616, 420, 182, 49, 8, 128, 640, 1408, 1792, 1456, 784, 280, 64, 9, 256, 1408, 3456, 4992, 4704, 3024, 1344, 408, 81, 10, 512, 3072, 8320, 13440, 14400
Offset: 0
Triangle starts:
1;
1,2;
2,4,3;
4,10,9,4;
8,24,28,16,5;
16,56,80,60,25,6;
Triangle (0,1,1,0,0,0,...) DELTA (1,1,-1,1,0,0,0,0,...) begins:
1
0, 1
0, 1, 2
0, 2, 4, 3
0, 4, 10, 9, 4
0, 8, 24, 28, 16, 5
0, 16, 56, 80, 60, 25, 6
- S. Klavzar, U. Milutinovic and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007), 86-95.
A167993
Expansion of x^2/((3*x-1)*(3*x^2-1)).
Original entry on oeis.org
0, 0, 1, 3, 12, 36, 117, 351, 1080, 3240, 9801, 29403, 88452, 265356, 796797, 2390391, 7173360, 21520080, 64566801, 193700403, 581120892, 1743362676, 5230147077, 15690441231, 47071500840, 141214502520, 423644039001, 1270932117003, 3812797945332, 11438393835996
Offset: 0
-
CoefficientList[Series[x^2/((3*x - 1)*(3*x^2 - 1)), {x, 0, 50}], x] (* G. C. Greubel, Jul 03 2016 *)
LinearRecurrence[{3,3,-9},{0,0,1},30] (* Harvey P. Dale, Nov 05 2017 *)
-
Vec(x^2/((3*x-1)*(3*x^2-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 29 2011
A171496
a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 6, a(1) = 28.
Original entry on oeis.org
6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
Offset: 0
-
[8*4^n-2*2^n: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
-
LinearRecurrence[{6,-8},{6,28},30] (* Harvey P. Dale, Dec 21 2014 *)
-
{m=22; v=concat([6, 28], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
A266214
Numbers n that are not coprime to the numerator of zeta(2*n)/(Pi^(2*n)).
Original entry on oeis.org
14, 22, 26, 28, 30, 38, 42, 44, 46, 50, 52, 54, 56, 58, 60, 62, 70, 74, 76, 78, 82, 84, 86, 88, 90, 92, 94, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 134, 138, 140, 142, 146, 148, 150, 152, 154, 156, 158, 162, 164, 166, 168, 170
Offset: 1
-
select(n -> igcd(n,numer(2^(2*n-1)*bernoulli(2*n)/(2*n)!)) > 1), [$1..1000]);
-
Select[Range@ 170, ! CoprimeQ[#, Numerator[Zeta[2 #]/Pi^(2 #)]] &] (* Michael De Vlieger, Dec 24 2015 *)
-
test(n) = if(gcd(numerator(2^(2*n-1)*bernfrac(2*n)/(2*n)!),n)!=1,1,0)
for(i=1,200,if(test(i),print1(i,", ")))
A087079
Number of lunar partitions of n: number of ways of writing n as a lunar sum of distinct terms, ignoring order.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 5, 22, 92, 376, 1520, 6112, 24512, 98176, 392960, 2, 22, 200, 1696, 13952, 113152, 911360, 7315456, 58621952, 469368832, 4, 92, 1696, 28928, 477184, 7749632, 124911616, 2005925888, 32153534464, 514926313472, 8
Offset: 0
a(5) = 16: we can write 5 = 5 + any subset of {4, 3, 2, 1} (16 ways).
a(12) = 22: we can write 12 = 12 + any subset of {11, 10, 2, 1} (16 ways), 12 = 2 + 11 + 10 = 2 + 11 = 2 + 10 and those three with 1 added (6 ways).
- D Applegate and N. J. A. Sloane, Table of n, a(n) for n = 0..2000
- D. Applegate, C program for lunar arithmetic and number theory [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- Index entries for sequences related to dismal (or lunar) arithmetic
-
A087079(n) = { my(v, r = 0, i, j, b); v = select(x -> x != 0, digits(n)); for (i = 0, 2^#v - 1, b = Vecrev(binary(i)); b = vector(#v, i, if (i <= #b, b[i], 0)); r += (-1)^vecsum(b) * 2^prod(j = 1, #v, if (b[j] == 1, v[j], v[j] + 1)); ); r/2;} /* Jerome Raulin, Feb 15 2017 */
A093357
Number of occurrences of pattern 2-1 after n iterations of morphism A007413.
Original entry on oeis.org
0, 4, 20, 88, 368, 1504, 6080, 24448, 98048, 392704, 1571840, 6289408, 25161728, 100655104, 402636800, 1610579968, 6442385408, 25769672704, 103078952960, 412316336128, 1649266393088, 6597067669504, 26388274872320
Offset: 1
-
Join[{0},Table[(3*4^(n-1)-2^n)/2,{n,2,30}]] (* or *) Join[{0}, LinearRecurrence[{6,-8},{4,20},30]] (* Harvey P. Dale, Apr 04 2012 *)
-
a(n)=if(n==1,0,(3*4^(n-1)-2^n)/2)
A109765
Expansion of x/((4*x-1)*(2*x-1)*(x+1)).
Original entry on oeis.org
0, 1, 5, 23, 97, 399, 1617, 6511, 26129, 104687, 419089, 1677039, 6709521, 26840815, 107368721, 429485807, 1717965073, 6871903983, 27487703313, 109950988015, 439804301585, 1759217905391, 7036873019665, 28147494874863
Offset: 0
-
CoefficientList[Series[x/((4x-1)(2x-1)(x+1)),{x,0,30}],x] (* or *)
LinearRecurrence[{5,-2,-8},{0,1,5},30] (* Harvey P. Dale, Jan 02 2013 *)
A121544
Sum of all proper base 4 numbers with n digits (those not beginning with 0).
Original entry on oeis.org
6, 114, 1896, 30624, 491136, 7862784, 125822976, 2013241344, 32212156416, 515395682304, 8246335635456, 131941389041664, 2111062300164096, 33776997104615424, 540431954881806336, 8646911282940739584, 138350580546379186176, 2213609288819376390144
Offset: 1
a(1) = 6 = 1 + 2 + 3.
a(2) = 114 = 10_4 + 11_4 + 12_4 + 13_4 + 20_4 + 21_4 + 22_4 + 23_4 + 30_4 + 31_4 + 32_4 + 33_4 = (4+5+6+7+8+9+10+11+12+13+14+15)_10.
A226508
a(n) = Sum_{i=3^n..3^(n+1)-1} i.
Original entry on oeis.org
3, 33, 315, 2889, 26163, 235953, 2125035, 19129689, 172180323, 1549662273, 13947078555, 125524061289, 1129717614483, 10167461718993, 91507165036875, 823564514029689, 7412080712360643, 66708726669526113, 600378540800575995, 5403406869529706889
Offset: 0
a(0) = 1+2 = 3,
a(1) = 3+4+5+6+7+8 = 33.
-
Table[3^(n - 1) (4 3^(n + 1) - 3), {n, 0, 20}] (* Bruno Berselli, Jun 11 2013 *)
LinearRecurrence[{12,-27},{3,33},30] (* Harvey P. Dale, Jun 19 2013 *)
-
a(n) = sum(i=3^n, 3^(n+1)-1, i) \\ Michel Marcus, Jun 11 2013
Previous
Showing 11-20 of 26 results.
Next
Comments