cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A194389 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) > 0, where r=sqrt(11) and < > denotes fractional part.

Original entry on oeis.org

1, 17, 19, 20, 21, 23, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 55, 57, 58, 59, 61, 77, 79, 80, 81, 83, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 115, 117, 118, 119, 121, 137, 139, 140, 141, 143, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[11]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 200}];
    Flatten[Position[t1, 1]]     (* A194387 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 200}];
    Flatten[Position[t2, 1]]     (* A194388 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 200}];
    Flatten[Position[t3, 1]]     (* A194389 *)

A040007 Continued fraction for sqrt(11).

Original entry on oeis.org

3, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3
Offset: 0

Views

Author

Keywords

Comments

Eventual period is (3,6). - Zak Seidov, Mar 05 2011
Decimal expansion of 37/110. - R. J. Mathar, Aug 22 2025

Examples

			3.316624790355399849114932736... = 3 + 1/(3 + 1/(6 + 1/(3 + 1/(6 + ...)))). - _Harry J. Smith_, Jun 02 2009
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง4.4 Powers and Roots, p. 144.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[11],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{3},120,{6,3}] (* Harvey P. Dale, Jan 18 2025 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 27000); x=contfrac(sqrt(11)); for (n=0, 20000, write("b040007.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009

Formula

From Stefano Spezia, Jan 18 2025: (Start)
G.f.: 3*(1 + x + x^2)/(1 - x^2).
E.g.f.: 3*(2*cosh(x) + sinh(x) - 1). (End)

A176395 Decimal expansion of 3+sqrt(11).

Original entry on oeis.org

6, 3, 1, 6, 6, 2, 4, 7, 9, 0, 3, 5, 5, 3, 9, 9, 8, 4, 9, 1, 1, 4, 9, 3, 2, 7, 3, 6, 6, 7, 0, 6, 8, 6, 6, 8, 3, 9, 2, 7, 0, 8, 8, 5, 4, 5, 5, 8, 9, 3, 5, 3, 5, 9, 7, 0, 5, 8, 6, 8, 2, 1, 4, 6, 1, 1, 6, 4, 8, 4, 6, 4, 2, 6, 0, 9, 0, 4, 3, 8, 4, 6, 7, 0, 8, 8, 4, 3, 3, 9, 9, 1, 2, 8, 2, 9, 0, 6, 5, 0, 9, 0, 7, 0, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 16 2010

Keywords

Comments

Continued fraction expansion of 3+sqrt(11) is A010704 preceded by 6.
a(n) = A010468(n) for n > 1.

Examples

			3+sqrt(11) = 6.31662479035539984911...
		

Crossrefs

Cf. A010468 (decimal expansion of sqrt(11)), A010704 (repeat 3, 6).

Programs

  • Mathematica
    RealDigits[3+Sqrt[11],10,120][[1]] (* Harvey P. Dale, Oct 28 2011 *)

A083334 a(n) = 12*a(n-2) - 25*a(n-4) with initial terms 1,6,17,47.

Original entry on oeis.org

1, 6, 17, 47, 179, 414, 1723, 3793, 16201, 35166, 151337, 327167, 1411019, 3046854, 13148803, 28383073, 122510161, 264425526, 1141401857, 2463529487, 10634068259, 22951715694, 99073772683, 213832351153, 923033565721
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 26 2003

Keywords

Comments

a(n)/A083335(n) converges to sqrt(11).

Crossrefs

Cf. A010468 (sqrt(11)), A083335.

Programs

  • Mathematica
    CoefficientList[Series[(1+6x+5x^2-25x^3)/(1-12x^2+25x^4), {x, 0, 10}], x]
    LinearRecurrence[{0,12,0,-25},{1,6,17,47},30] (* Harvey P. Dale, Oct 15 2012 *)

Formula

G.f.: (1 + 6*x + 5*x^2 - 25*x^3) / (1 - 12*x^2 + 25*x^4).
a(n) = (x^(n+1) + (-1)^(n+1)*(x-2)^(n+1))/2^ceiling(n/2 + 1) where x = 1 + sqrt(11). - Ben Paul Thurston, Aug 30 2006 [edited by Jon E. Schoenfield, Jun 25 2019]

A147313 Decimal expansion of sqrt(11)/2.

Original entry on oeis.org

1, 6, 5, 8, 3, 1, 2, 3, 9, 5, 1, 7, 7, 6, 9, 9, 9, 2, 4, 5, 5, 7, 4, 6, 6, 3, 6, 8, 3, 3, 5, 3, 4, 3, 3, 4, 1, 9, 6, 3, 5, 4, 4, 2, 7, 2, 7, 9, 4, 6, 7, 6, 7, 9, 8, 5, 2, 9, 3, 4, 1, 0, 7, 3, 0, 5, 8, 2, 4, 2, 3, 2, 1, 3, 0, 4, 5, 2, 1, 9, 2, 3, 3, 5, 4, 4, 2, 1, 6, 9, 9, 5, 6, 4, 1, 4, 5, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2009

Keywords

Examples

			1.6583123951776999245574663683353433419635442727946767985293...
		

References

  • D. Mumford et al., Indra's Pearls, Cambridge 2002; see p. 308.

Crossrefs

Cf. A010468 (sqrt(11)).

Programs

  • Magma
    SetDefaultRealField(RealField(120)); Sqrt(11)/2; // G. C. Greubel, Jan 09 2020
    
  • Maple
    evalf( sqrt(11)/2, 120); # G. C. Greubel, Jan 09 2020
  • Mathematica
    RealDigits[Sqrt[11]/2,10,120][[1]] (* Harvey P. Dale, Mar 06 2012 *)
  • PARI
    default(realprecision, 120); sqrt(11)/2 \\ G. C. Greubel, Jan 09 2020
    
  • Sage
    numerical_approx(sqrt(11)/2, digits=120) # G. C. Greubel, Jan 09 2020

A176056 Decimal expansion of (3+sqrt(11))/3.

Original entry on oeis.org

2, 1, 0, 5, 5, 4, 1, 5, 9, 6, 7, 8, 5, 1, 3, 3, 2, 8, 3, 0, 3, 8, 3, 1, 0, 9, 1, 2, 2, 2, 3, 5, 6, 2, 2, 2, 7, 9, 7, 5, 6, 9, 6, 1, 8, 1, 8, 6, 3, 1, 1, 7, 8, 6, 5, 6, 8, 6, 2, 2, 7, 3, 8, 2, 0, 3, 8, 8, 2, 8, 2, 1, 4, 2, 0, 3, 0, 1, 4, 6, 1, 5, 5, 6, 9, 6, 1, 4, 4, 6, 6, 3, 7, 6, 0, 9, 6, 8, 8, 3, 6, 3, 5, 6, 7
Offset: 1

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(11))/3 is A010699.

Examples

			(3+sqrt(11))/3 = 2.10554159678513328303...
		

Crossrefs

Cf. A010468 (decimal expansion of sqrt(11)), A010699 (repeat 2, 9).

Programs

  • Mathematica
    RealDigits[(3+Sqrt[11])/3,10,120][[1]] (* Harvey P. Dale, May 22 2015 *)

A176105 Decimal expansion of (3+sqrt(11))/2.

Original entry on oeis.org

3, 1, 5, 8, 3, 1, 2, 3, 9, 5, 1, 7, 7, 6, 9, 9, 9, 2, 4, 5, 5, 7, 4, 6, 6, 3, 6, 8, 3, 3, 5, 3, 4, 3, 3, 4, 1, 9, 6, 3, 5, 4, 4, 2, 7, 2, 7, 9, 4, 6, 7, 6, 7, 9, 8, 5, 2, 9, 3, 4, 1, 0, 7, 3, 0, 5, 8, 2, 4, 2, 3, 2, 1, 3, 0, 4, 5, 2, 1, 9, 2, 3, 3, 5, 4, 4, 2, 1, 6, 9, 9, 5, 6, 4, 1, 4, 5, 3, 2, 5, 4, 5, 3, 5, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 10 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(11))/2 is A010704.

Examples

			(3+sqrt(11))/2 = 3.15831239517769992455...
		

Crossrefs

Cf. A010468 (decimal expansion of sqrt(11)), A010704 (repeat 3, 6).

Programs

  • Mathematica
    RealDigits[(3+Sqrt[11])/2,10,120][[1]] (* Harvey P. Dale, Apr 16 2013 *)

Formula

Equals 1.5 + A147313. [R. J. Mathar, Apr 12 2010]

A177839 Decimal expansion of sqrt(2442).

Original entry on oeis.org

4, 9, 4, 1, 6, 5, 9, 6, 4, 0, 2, 4, 2, 3, 3, 4, 6, 1, 7, 7, 6, 2, 2, 7, 0, 0, 3, 9, 0, 0, 1, 9, 1, 8, 6, 4, 2, 3, 0, 8, 0, 6, 6, 1, 9, 8, 0, 5, 3, 8, 8, 3, 2, 6, 9, 4, 3, 4, 7, 5, 3, 6, 1, 2, 6, 8, 2, 9, 5, 5, 3, 7, 6, 9, 2, 9, 5, 6, 4, 0, 1, 8, 3, 1, 6, 9, 1, 7, 9, 4, 2, 8, 4, 3, 9, 6, 7, 1, 1, 9, 6, 0, 6, 4, 5
Offset: 2

Views

Author

Klaus Brockhaus, May 14 2010

Keywords

Comments

Continued fraction expansion of sqrt(2442) is 49 followed by (repeat 2, 2, 2, 98).
sqrt(2442) = sqrt(2)*sqrt(3)*sqrt(11)*sqrt(37).

Examples

			sqrt(2442) = 49.41659640242334617762...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A002194 (decimal expansion of sqrt(3)), A010468 (decimal expansion of sqrt(11)), A010491 (decimal expansion of sqrt(37)), A177838 (decimal expansion of (44+sqrt(2442))/88).

Programs

  • Mathematica
    RealDigits[Sqrt[2442],10,120][[1]] (* Harvey P. Dale, Apr 01 2012 *)

A274526 a(n) = ((1 + sqrt(11))^n - (1 - sqrt(11))^n)/sqrt(11).

Original entry on oeis.org

0, 2, 4, 28, 96, 472, 1904, 8528, 36096, 157472, 675904, 2926528, 12612096, 54489472, 235099904, 1015094528, 4381188096, 18913321472, 81638523904, 352410262528, 1521205764096, 6566514153472, 28345085947904, 122355313430528, 528161486340096
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2016

Keywords

Comments

Number of zeros in substitution system {0 -> 11111, 1 -> 1001} at step n from initial string "1" (see example).

Examples

			Evolution from initial string "1": 1 -> 1001 -> 100111111111111001 -> 1001111111111110011001100110011001100110011001100110011001100111111111111001 -> ...
Therefore, number of zeros at step n:
a(0) = 0;
a(1) = 2;
a(2) = 4;
a(3) = 28, etc.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 10}, {0, 2}, 25]
  • PARI
    concat(0, Vec(2*x/(1-2*x-10*x^2) + O(x^99))) \\ Altug Alkan, Jun 27 2016

Formula

O.g.f.: 2*x/(1 - 2*x - 10*x^2).
E.g.f.: 2*exp(x)*sinh(sqrt(11)*x)/sqrt(11).
Dirichlet g.f.: (PolyLog(s,1+sqrt(11)) - PolyLog(s,1-sqrt(11)))/sqrt(11), where PolyLog(s,x) is the polylogarithm function.
a(n) = 2*a(n-1) + 10*a(n-2).
a(n) = 2*A083102(n-1), n>0.
Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(11) = 1 + A010468.

A017937 Powers of sqrt(11) rounded down.

Original entry on oeis.org

1, 3, 11, 36, 121, 401, 1331, 4414, 14641, 48558, 161051, 534145, 1771561, 5875603, 19487171, 64631634, 214358881, 710947978, 2357947691, 7820427766, 25937424601, 86024705429, 285311670611
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010468 (sqrt(11)).

Programs

Formula

a(n) = floor(sqrt(11^n)). - Vincenzo Librandi, Jun 24 2011
Previous Showing 11-20 of 29 results. Next