cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 80 results. Next

A199589 Decimal expansion of the greatest root of 6x^3 - 6x - 2 = 0.

Original entry on oeis.org

1, 1, 3, 7, 1, 5, 8, 0, 4, 2, 6, 0, 3, 2, 5, 7, 6, 1, 2, 8, 3, 7, 6, 6, 7, 9, 5, 1, 9, 2, 0, 0, 9, 8, 7, 6, 2, 5, 8, 1, 3, 6, 0, 3, 9, 4, 2, 2, 9, 9, 0, 6, 5, 8, 5, 9, 6, 2, 8, 8, 7, 9, 6, 4, 9, 4, 4, 2, 5, 1, 0, 6, 6, 5, 6, 8, 5, 0, 9, 4, 5, 4, 9, 8, 5, 3, 1, 6, 7, 7, 7, 6, 7, 8, 9, 9, 7, 7, 0
Offset: 1

Views

Author

Frank M Jackson, Nov 08 2011

Keywords

Comments

If the side lengths of a quadrilateral form a harmonic progression in the ratio 1 : 1/(1+d) : 1/(1+2d) : 1/(1+3d) where d is the common difference between the denominators of the harmonic progression, then the triangle inequality condition requires that d be in the range f < d < g, where g = 1.1371580... and is the greatest root of the equation: 2 + 6d - 6d^3 = 0. The value of f is given in A199590.

Examples

			1.13715804260325761283766795192009876258136039422990658596288796494425...
		

Crossrefs

Programs

Formula

Equals sqrt(4/3)*cos(Pi/18). - Charles R Greathouse IV, Nov 10 2011
Equals Product_{k>=1} (1 - (-1)^k/A016051(k)). - Amiram Eldar, Nov 22 2024

A199590 Decimal expansion (unsigned) of the greatest root of 6x^3 + 18x^2 + 12x + 2 = 0.

Original entry on oeis.org

2, 5, 7, 7, 7, 2, 8, 0, 1, 0, 3, 1, 4, 4, 0, 8, 4, 4, 7, 2, 9, 4, 4, 9, 3, 9, 7, 2, 7, 0, 6, 3, 5, 8, 2, 2, 7, 0, 8, 9, 4, 4, 1, 2, 5, 7, 0, 0, 9, 7, 7, 3, 1, 9, 7, 8, 2, 3, 1, 4, 6, 3, 9, 3, 9, 5, 8, 0, 8, 6, 4, 4, 5, 7, 6, 7, 3, 0, 5, 3, 7, 0, 8, 5, 8, 2, 4, 9, 9, 8, 0, 0, 3, 1, 0, 1, 5, 7, 2, 3
Offset: 0

Views

Author

Frank M Jackson, Nov 08 2011

Keywords

Comments

If the side lengths of a quadrilateral form a harmonic progression in the ratio 1 : 1/(1+d) : 1/(1+2d) : 1/(1+3d) where d is the common difference between the denominators of the harmonic progression, then the triangle inequality condition requires that d be in the range f < d < g, where f = -0.257772801... and is the greatest root of the equation: 2 + 12d + 18d^2 + 6d^3 = 0. The value of g is given in A199589.

Examples

			-0.257772801031440844729449397270635822708944125700977319782314639395808...
		

Crossrefs

Programs

Formula

sqrt(4/3)*sin(Pi*2/9) - 1. - Charles R Greathouse IV, Nov 10 2011

Extensions

a(99) corrected by Sean A. Irvine, Jul 25 2021

A274541 Decimal expansion of exp(sqrt(2)/2).

Original entry on oeis.org

2, 0, 2, 8, 1, 1, 4, 9, 8, 1, 6, 4, 7, 4, 7, 2, 4, 5, 1, 1, 0, 8, 1, 2, 6, 1, 1, 2, 7, 4, 6, 3, 5, 1, 1, 7, 5, 1, 7, 4, 3, 2, 5, 0, 9, 2, 5, 4, 2, 6, 1, 3, 5, 2, 0, 6, 1, 7, 7, 7, 5, 9, 7, 2, 1, 2, 2, 2, 1, 5, 3, 9, 5, 0, 4, 8, 7, 1, 6, 5, 5, 9, 4, 2, 5, 9, 6
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2016

Keywords

Comments

Define P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k), n >= 1 and P(0) = 1 with x(2) = (sqrt(2) + 1) and x(n) = 1 for all other n.
We find that C2 = lim_{n->infinity} P(n) = exp(sqrt(2)/2).
The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.

Examples

			c = 2.02811498164747245110812611274635117517432509254...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp[Sqrt[2]/2]; // G. C. Greubel, Aug 19 2018
  • Maple
    Digits := 140: evalf(exp(sqrt(2)/2)); # End program 1.
    P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=2 then (sqrt(2)+1) else 1 fi: end:
    Digits := 140: evalf(P(250)); # End program 2.
  • Mathematica
    First@ RealDigits@ N[Exp[Sqrt[2]/2], 83] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    my(x=exp(sqrt(2)/2)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016
    

Formula

c = exp(sqrt(2)/2).
c = lim_{n->infinity} P(n), with P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k), for n >= 1, and P(0) = 1, with x(2) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A376867 Reduced numerators of Newton's iteration for 1/sqrt(2), starting with 1/2.

Original entry on oeis.org

1, 5, 355, 94852805, 1709678476417571835487555, 9994796326591347130392203807311551183419838794447313956622219314498503205
Offset: 0

Views

Author

Steven Finch, Oct 07 2024

Keywords

Comments

An explicit formula for a(n) is not known, although it arises from a recurrence and the corresponding denominators are simply 2^(3^n) = A023365(n+1).
Next term is too large to include.

Examples

			a(1) = 5 because b(1) = (1/2)*(3/2 - 1/4) = 5/8.
1/2, 5/8, 355/512, 94852805/134217728, ... = a(n)/A023365(n+1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1/2, b(n-1)*(3/2-b(n-1)^2)) end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..5);  # Alois P. Heinz, Oct 07 2024
  • Mathematica
    a[0]=1/2; a[n_]:=a[n-1](3/2-a[n-1]^2); Numerator[Array[a,6,0]] (* Stefano Spezia, Oct 15 2024 *)
  • Python
    from itertools import count, islice
    def A376867_gen(): # generator of terms
        p = 1
        for k in count(0):
            yield p
            p *= ((3<<((3**k<<1)-1))-p**2)
    A376867_list = list(islice(A376867_gen(),6)) # Chai Wah Wu, Oct 11 2024

Formula

a(n) is the reduced numerator of b(n) = b(n-1)*(3/2 - b(n-1)^2); b(0) = 1/2.
Limit_{n -> oo} a(n)/A023365(n+1) = 1/sqrt(2) = A010503.
a(n+1) = a(n)*(3*2^(2*3^n-1)-a(n)^2). - Chai Wah Wu, Oct 11 2024

A377298 Decimal expansion of the surface area of a truncated cube with unit edge length.

Original entry on oeis.org

3, 2, 4, 3, 4, 6, 6, 4, 3, 6, 3, 6, 1, 4, 8, 9, 5, 1, 7, 2, 6, 7, 5, 1, 5, 7, 3, 7, 3, 5, 2, 8, 1, 2, 1, 6, 7, 6, 7, 2, 1, 6, 7, 3, 0, 1, 2, 1, 4, 4, 1, 3, 8, 1, 3, 4, 2, 3, 1, 7, 7, 0, 8, 1, 4, 7, 9, 2, 6, 5, 5, 7, 7, 5, 3, 6, 2, 8, 8, 4, 5, 4, 0, 3, 6, 6, 9, 4, 2, 7
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			32.4346643636148951726751573735281216767216730121...
		

Crossrefs

Cf. A377299 (volume), A294968 (circumradius), A010503 (midradius - 1), A377296 (Dehn invariant, negated).

Programs

  • Mathematica
    First[RealDigits[2*(6 + Sqrt[72] + Sqrt[3]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedCube", "SurfaceArea"], 10, 100]]

Formula

Equals 2*(6 + 6*sqrt(2) + sqrt(3)) = 2*(6 + 2*A002193 + A002194) = 12 + 2*A010524 + A010469.

A212886 Decimal expansion of 2/(3*sqrt(3)) = 2*sqrt(3)/9.

Original entry on oeis.org

3, 8, 4, 9, 0, 0, 1, 7, 9, 4, 5, 9, 7, 5, 0, 5, 0, 9, 6, 7, 2, 7, 6, 5, 8, 5, 3, 6, 6, 7, 9, 7, 1, 6, 3, 7, 0, 9, 8, 4, 0, 1, 1, 6, 7, 5, 1, 3, 4, 1, 7, 9, 1, 7, 3, 4, 5, 7, 3, 4, 8, 8, 4, 3, 2, 2, 6, 5, 1, 7, 8, 1, 5, 3, 5, 2, 8, 8, 8, 9, 7, 1, 2, 9, 1, 4, 3, 5, 9, 7, 0, 5, 7, 1, 6, 6, 3, 5, 0, 1, 5, 0, 1, 3, 9
Offset: 0

Views

Author

Rick L. Shepherd, May 29 2012

Keywords

Comments

Consider any cubic polynomial f(x) = a(x - r)(x - (r + s))(x -(r + 2s)), where a, r, and s are real numbers with s > 0 and nonzero a; i.e., any cubic polynomial with three distinct real roots, of which the middle root, r + s, is equidistant (with distance s) from the other two. Then the absolute value of f's local extrema is |a|*s^3*(2*sqrt(3)/9). They occur at x = r + s +- s*(sqrt(3)/3), with the local maximum, M, at r + s - s*sqrt(3)/3 when a is positive and at r + s + s*sqrt(3)/3 when a is negative (and the local minimum, m, vice versa). Of course m = -M < 0.
A quadratic number with denominator 9 and minimal polynomial 27x^2 - 4. - Charles R Greathouse IV, Apr 21 2016
This constant is also the maximum curvature of the exponential curve, occurring at the point M of coordinates [x_M = -log(2)/2 = (-1/10)*A016655; y_M = sqrt(2)/2 = A010503]. The corresponding minimum radius of curvature is (3*sqrt(3))/2 = A104956 (see the reference Eric Billault and the link MathStackExchange). - Bernard Schott, Feb 02 2020

Examples

			0.384900179459750509672765853667971637098401167513417917345734...
		

References

  • Eric Billault, Walter Damin, Robert Ferréol et al., MPSI - Classes Prépas, Khôlles de Maths, Ellipses, 2012, exercice 17.07 pages 386, 389-390.

Crossrefs

Programs

  • Mathematica
    RealDigits[2/(3*Sqrt[3]), 10, 105] (* T. D. Noe, May 31 2012 *)
  • PARI
    default(realprecision, 1000); 2*sqrt(3)/9

Formula

(2/9)*sqrt(3) = (2/9)*A002194.

A229117 Numbers k where d/k reaches a new record, with d the distance from the k-th triangular number to the nearest square.

Original entry on oeis.org

2, 3, 13, 20, 37, 78, 119, 218, 457, 696, 1273, 2666, 4059, 7422, 15541, 23660, 43261, 90582, 137903, 252146, 527953, 803760, 1469617, 3077138, 4684659, 8565558, 17934877, 27304196, 49923733, 104532126, 159140519, 290976842
Offset: 1

Views

Author

Ralf Stephan, Sep 14 2013

Keywords

Comments

Positions of records of A229118(n)/n.
The maximum of d/k appears to converge to sqrt(2)/2 (A010503), i.e., k*(k+1)/2 is not more than k*sqrt(2)/2 distant from a square.

Examples

			G.f. = 2*x + 3*x^2 + 13*x^3 + 20*x^4 + 37*x^5 + 78*x^6 + 119*x^7 + 218*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(2 +x+10*x^2-5*x^3+11*x^4-19*x^5+x^6-2*x^7+3*x^8)/(1-x-6*x^3+6*x^4+x^6- x^7))); // G. C. Greubel, Aug 09 2018
  • Mathematica
    Drop[CoefficientList[Series[x*(2 + x + 10*x^2 - 5*x^3 + 11*x^4 - 19*x^5 + x^6 - 2*x^7 + 3*x^8)/(1 - x - 6*x^3 + 6*x^4 + x^6 - x^7), {x, 0, 50}], x], 1] (* G. C. Greubel, Aug 09 2018 *)
  • PARI
    m=0;for(n=1, 10^9, t=n*(n+1)/2;s=sqrtint(t);d=min(t-s^2,(s+1)^2-t);r=d/n;if(r>m,m=r;print1(n, ",")))
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( (1 + x + x^2 + 4*x^3 + x^4 + 11*x^5 - 18*x^6 - 2*x^8 + 3*x^9) / (1 - x - 6*x^3 + 6*x^4 + x^6 - x^7) + x * O(x^n), n))}; /* Michael Somos, Dec 25 2016 */
    

Formula

G.f.: x * (2 + x + 10*x^2 - 5*x^3 + 11*x^4 - 19*x^5 + x^6 - 2*x^7 + 3*x^8) / (1 - x - 6*x^3 + 6*x^4 + x^6 - x^7). - Michael Somos, Dec 25 2016
a(n) = a(n-1) + 6*a(n-3) - 6*a(n-4) - a(n-6) + a(n-7) if n>9. - Michael Somos, Dec 25 2016

A237129 Let d = d(1)d(2)... d(q) denote the decimal expansion of an angle d expressed in degrees. The sequence a(n) lists the angles such that sin(d) = cos(d(1)*d(2)*... *d(q)).

Original entry on oeis.org

90, 418, 450, 666, 726, 778, 786, 810, 1146, 1170, 1386, 1395, 1530, 1775, 1890, 2218, 2250, 2394, 2474, 2482, 2610, 2842, 2898, 2970, 3186, 3195, 3312, 3330, 3366, 3375, 3690, 3711, 3735, 3915, 3933, 3978, 4050, 4146, 4194, 4274, 4282, 4338, 4410, 4698, 4770
Offset: 1

Views

Author

Michel Lagneau, Feb 04 2014

Keywords

Examples

			666 is in the sequence because sin(666°) = cos(6*6*6°) = -.8090169943749... = -phi/2 where phi is the golden ratio (1+sqrt(5))/2. (A019863)
418 is in the sequence because sin(418°) = cos(4*1*8°)= .84804809615... (A019867)
3915 is in the sequence because sin(3915°) = cos(3*9*1*5°)= -.70710678118654752440 = -1/sqrt(2). (A010503)
		

Programs

  • Maple
    with(numtheory):err:=1/10^10:Digits:=20:for n from 1 to 5000 do:x:=convert(n,base,10):n1:=nops(x):p:=product('x[i]', 'i'=1..n1):s1:=evalf(sin(n*Pi/180)):s2:=evalf(cos(p*Pi/180)):if abs(s1-s2)
    				

A263353 Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,1/2; 3/2,3/2; x) at x=1/2.

Original entry on oeis.org

1, 0, 3, 2, 6, 3, 1, 9, 5, 5, 7, 4, 4, 0, 7, 1, 4, 7, 2, 6, 7, 7, 0, 9, 3, 5, 3, 3, 9, 8, 1, 5, 8, 5, 8, 9, 4, 7, 0, 7, 3, 0, 2, 8, 2, 0, 4, 1, 2, 2, 0, 7, 6, 6, 4, 8, 5, 4, 0, 0, 9, 8, 1, 0, 5, 0, 0, 2, 3, 3, 8, 7, 3, 4, 6, 3, 0, 7, 0, 2, 0, 7, 5, 0, 4, 4, 8, 7, 5, 0, 6, 4, 3, 4, 5, 4, 9, 3, 3
Offset: 1

Views

Author

R. J. Mathar, Oct 16 2015

Keywords

Examples

			1.032631955744071472677093...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); (Pi(R)*Log(2)/4 + Catalan(R))/Sqrt(2); // G. C. Greubel, Aug 25 2018
  • Maple
    evalf(hypergeom([1/2,1/2,1/2],[3/2,3/2],1/2) );
  • Mathematica
    RealDigits[(Pi*Log[2]/4 + Catalan)/Sqrt[2], 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
  • PARI
    default(realprecision, 100); (Pi*log(2)/4 + Catalan)/sqrt(2) \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals (Pi*log(2)/4+Catalan)/sqrt(2) = (A003881 * A002162 + A006752) * A010503.
Equals Sum_{k>=0} binomial(2*k,k)/(2^(3*k)*(2*k + 1)^2) (see Finch). - Stefano Spezia, Nov 12 2024

A270394 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/Fibonacci(k+1).

Original entry on oeis.org

2, 3, 9, 59, 9437, 62059971, 2813586350787717, 8534689167911295735140758101600, 54171527001975050997893888972139886506909953999125751170768531
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(1/2) = 1/2 + 1/(2*3) + 1/(3*9) + 1/(5*59) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/Fibonacci[k+1]; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/fibonacci(k+1);
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 22 2016
Previous Showing 51-60 of 80 results. Next