cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 89 results. Next

A375069 Decimal expansion of the sagitta of a regular hexagon with unit side length.

Original entry on oeis.org

1, 3, 3, 9, 7, 4, 5, 9, 6, 2, 1, 5, 5, 6, 1, 3, 5, 3, 2, 3, 6, 2, 7, 6, 8, 2, 9, 2, 4, 7, 0, 6, 3, 8, 1, 6, 5, 2, 8, 5, 9, 7, 3, 7, 3, 0, 9, 4, 8, 0, 9, 6, 8, 5, 9, 7, 2, 0, 9, 6, 5, 1, 0, 2, 7, 4, 0, 3, 3, 4, 9, 1, 5, 4, 5, 5, 9, 9, 9, 8, 1, 4, 5, 9, 4, 2, 6, 9, 0, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 30 2024

Keywords

Examples

			0.133974596215561353236276829247063816528597373...
		

Crossrefs

Essentially the same as A334843.
Cf. A010527 (apothem), A104956 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).

Programs

Formula

Equals tan(Pi/12)/2 = A019913/2.
Equals 1 - sqrt(3)/2 = 1 - A010527.
Equals A152422^2 = (1 - A332133)^2. - Hugo Pfoertner, Jul 30 2024
Equals A334843-1/2. - R. J. Mathar, Aug 02 2024

A003630 Inert rational primes in Q[sqrt(3)].

Original entry on oeis.org

5, 7, 17, 19, 29, 31, 41, 43, 53, 67, 79, 89, 101, 103, 113, 127, 137, 139, 149, 151, 163, 173, 197, 199, 211, 223, 233, 257, 269, 271, 281, 283, 293, 307, 317, 331, 353, 367, 379, 389, 401, 439, 449, 461, 463, 487, 499, 509, 521, 523, 547, 557, 569, 571, 593
Offset: 1

Views

Author

Keywords

Comments

Primes p such that p divides 3^(p-1)/2 + 1. - Cino Hilliard, Sep 04 2004
Primes p such that 1 + 4*x + x^2 is irreducible over GF(p). - Joerg Arndt, Aug 10 2011
Conjecture: Primes congruent to {5, 7} mod 12. - Vincenzo Librandi, Aug 06 2012
The above conjecture is correct. In fact, this is the sequence of primes p such that Kronecker(12,p) = -1 (12 is the discriminant of Q[sqrt(3)]), that is, odd primes that have 3 as a quadratic nonresidue. - Jianing Song, Nov 21 2018
Conjecture: Let r(n) = (a(n) - 1)/(a(n) + 1) if a(n) mod 4 = 1, (a(n) + 1)/(a(n) - 1) otherwise; then Product_{n>=1} r(n) = (2/3) * (4/3) * (8/9) * (10/9) * (14/15) * ... = sqrt(3)/2. (See A010527.) We see that the sum of the numerator and denominator of each fraction equals the corresponding term of the sequence: 2 + 3 = 5, 4 + 3 = 7, 8 + 9 = 17, ... - Dimitris Valianatos, Mar 26 2017

Examples

			Since (-1)*(1 - sqrt(3))*(1 + sqrt(3)) = 2, 2 is not in the sequence.
3 is not in the sequence for obvious reasons.
x^2 == 3 (mod 5) has no solution, which means that 5 is an inert prime in Z[sqrt(3)]. Therefore, 5 is in the sequence.
		

References

  • H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 498.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2, 200]], JacobiSymbol[3, #] == -1 &] (* Alonso del Arte, Mar 26 2017 *)
  • PARI
    {a(n) = local( cnt, m ); if( n<1, return( 0 )); while( cnt < n, if( isprime( m++) && kronecker( 12, m )== -1, cnt++ )); m} /* Michael Somos, Aug 14 2012 */

A066408 Numbers n such that the Eisenstein integer (1 - ω)^n - 1 has prime norm, where ω = -1/2 + sqrt(-3)/2.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 79, 163, 193, 239, 317, 353, 659, 709, 1049, 1103, 1759, 2029, 5153, 7541, 9049, 10453, 23743, 255361, 534827, 2237561, 2888387, 4043119
Offset: 1

Views

Author

Mike Oakes, Dec 24 2001

Keywords

Comments

Analog of Mersenne primes in Eisenstein integers.
The norm of a + b * ω is (a + b * ω) * (a + b * ω^2) = a^2 + a*b + b^2.
Indices for which the Eisenstein-Mersenne numbers are primes. The p-th Eisenstein-Mersenne number can be written as 3^p - Legendre(3, p) * 3^((p + 1)/2) + 1. Note the enormous gap between 23743 and 255361. A modified version of Chris Nash's PFGW program was used to find the last term. - Jeroen Doumen (doumen(AT)win.tue.nl), Oct 31 2002
Let q be the integer quaternion (3 + i + j + k)/2. Then q^n - 1 is a quaternion prime for these n; that is, the norm of q^n - 1 is a rational prime. - T. D. Noe, Feb 02 2005
The actual norms also belong to the class of Generalized Unique primes (see Links section), that is primes which have a period of expansion of 1/p (in some general, non-decimal system) that it shares with no other prime. - Serge Batalov, Mar 29 2014
Next term > 4400000. - Serge Batalov, Jun 20 2023

Examples

			For n = 7, (1 - ω)^7 - 1 has norm 2269, a prime.
Or, for p = 7, 3^7 + 3^4 + 1 = 2269, which is prime.
		

References

  • P. H. T. Beelen, Algebraic geometry and coding theory, Ph.D. Thesis, Eindhoven, The Netherlands, September 2001.
  • J. M. Doumen, Ph.D. Thesis, Eindhoven, The Netherlands, to appear.
  • Mike Oakes, posting to primenumbers(AT)yahoogroups.com, Dec 24 2001.

Crossrefs

The actual norms are in A066413.

Programs

  • Mathematica
    maxPi = 3000; primeNormQ[p_] := PrimeQ[1 + 3^p - 2*3^(p/2)*Cos[(p*Pi)/6]]; A066408 = {}; Do[ If[primeNormQ[p = Prime[k]], Print[p]; AppendTo[A066408, p]], {k, 1, maxPi}]; A066408 (* Jean-François Alcover, Oct 21 2011 *)
  • PARI
    print1("2, "); /*the only even member; it is special*/ forprime(n=3,2029,if(ispseudoprime(3^n-kronecker(3,n)*3^((n+1)/2)+1),print1(n, ", "))) \\ Serge Batalov, Mar 29 2014

Extensions

a(26) from Serge Batalov, Mar 29 2014
a(27) from Ryan Propper and Serge Batalov, Jun 18 2023
a(28) from Ryan Propper and Serge Batalov, Jun 20 2023
Corrected link to NMBRTHRY posting. - Serge Batalov, Apr 01 2014

A179637 Decimal expansion of the surface area of pentagonal rotunda with edge length 1.

Original entry on oeis.org

2, 2, 3, 4, 7, 2, 0, 0, 2, 6, 5, 3, 9, 4, 1, 2, 8, 2, 7, 6, 7, 9, 8, 4, 1, 4, 1, 5, 8, 1, 8, 8, 6, 1, 3, 0, 7, 3, 8, 1, 8, 0, 1, 3, 5, 1, 3, 4, 3, 1, 6, 2, 2, 6, 1, 2, 9, 7, 9, 9, 7, 6, 3, 1, 6, 7, 1, 0, 2, 0, 4, 7, 1, 6, 7, 6, 3, 5, 2, 4, 7, 7, 6, 8, 3, 3, 9, 9, 7, 2, 1, 9, 3, 8, 6, 4, 1, 1, 4, 7, 0, 3, 3, 2, 0
Offset: 2

Views

Author

Keywords

Comments

Pentagonal rotunda: 20 vertices, 35 edges, and 17 faces.

Examples

			22.3472002653941282767984141581886130738180135134316226129799763167102...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5*(145+58*Sqrt[5]+2*Sqrt[30*(65+29*Sqrt[5])])]/2,200]]

Formula

Digits of sqrt(5*(145+58*sqrt(5)+2*sqrt(30*(65+29*sqrt(5)))))/2.

Extensions

Offset corrected by R. J. Mathar, Aug 15 2010

A375067 Decimal expansion of the apothem (inradius) of a regular pentagon with unit side length.

Original entry on oeis.org

6, 8, 8, 1, 9, 0, 9, 6, 0, 2, 3, 5, 5, 8, 6, 7, 6, 9, 1, 0, 3, 6, 0, 4, 7, 9, 0, 9, 5, 5, 4, 4, 3, 8, 3, 9, 7, 6, 2, 9, 4, 9, 6, 6, 8, 0, 0, 4, 0, 7, 9, 3, 3, 1, 6, 8, 2, 8, 3, 7, 8, 8, 2, 8, 0, 9, 5, 4, 7, 5, 9, 6, 8, 8, 3, 5, 8, 6, 4, 9, 2, 5, 3, 2, 9, 7, 6, 4, 9, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 29 2024

Keywords

Examples

			0.688190960235586769103604790955443839762949668...
		

Crossrefs

Cf. A300074 (circumradius), A375068 (sagitta), A102771 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/5)/2 = A019952/2.
Equals 1/(2*tan(Pi/5)) = 1/(2*A019934).
Equals sqrt(1/4 + 1/(2*sqrt(5))).
Equals (1/2)*csc(Pi/5)*cos(Pi/5) = A300074*A019863.
Equals A300074 - A375068.
Equals A131595/30. - Hugo Pfoertner, Jul 30 2024

A088543 Decimal expansion of sqrt(15)/2.

Original entry on oeis.org

1, 9, 3, 6, 4, 9, 1, 6, 7, 3, 1, 0, 3, 7, 0, 8, 4, 4, 2, 5, 8, 9, 6, 3, 2, 6, 9, 9, 8, 9, 1, 1, 9, 9, 8, 0, 5, 4, 1, 6, 4, 6, 0, 8, 5, 2, 6, 4, 5, 7, 9, 5, 4, 1, 3, 2, 9, 3, 7, 8, 6, 8, 8, 3, 0, 5, 6, 7, 4, 1, 5, 4, 5, 9, 6, 8, 4, 8, 9, 5, 1, 6, 7, 5, 9, 6, 4, 3, 6, 8, 8, 4, 2, 9, 3, 3, 6, 7, 5, 8, 9, 5, 8, 1, 5
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Nov 16 2003

Keywords

Comments

This is the ratio of the base of an isosceles triangle to its height when the other two sides are each equal to twice the base.
Exradius opposite the side of length 3 of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link. - Rick L. Shepherd, May 14 2008

Examples

			1.93649167310370844258963269989119980541646085264579541329378688305674154596...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Sqrt[15]/2, 10, 100]] (* Paolo Xausa, Jun 18 2024 *)

Formula

sqrt(15)/2 = A010472/2 = A140249/3. - Rick L. Shepherd, May 14 2008

Extensions

More terms from Rick L. Shepherd, May 14 2008

A165952 Decimal expansion of 2*sqrt(3)/(3*Pi).

Original entry on oeis.org

3, 6, 7, 5, 5, 2, 5, 9, 6, 9, 4, 7, 8, 6, 1, 3, 6, 6, 3, 4, 0, 8, 8, 4, 3, 3, 2, 2, 0, 8, 6, 4, 6, 2, 9, 4, 2, 6, 4, 9, 2, 4, 3, 2, 0, 2, 4, 4, 4, 2, 7, 1, 0, 1, 8, 6, 6, 2, 4, 4, 0, 1, 3, 5, 2, 7, 3, 5, 3, 5, 3, 5, 6, 4, 6, 1, 7, 9, 8, 6, 3, 2, 2, 6, 9, 2, 0, 0, 1, 9, 2, 1, 5, 4, 4, 7, 2, 5, 9, 4, 7, 1, 7, 9, 8
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a cube to the volume of the circumscribed sphere (which has circumradius a*sqrt(3)/2 = a*A010527, where a is the cube's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165953, and A165954. A063723 shows the order of these by size.

Examples

			0.3675525969478613663408843322086462942649243202444271018662440135273535356...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2*Sqrt[3])/(3Pi),10,120][[1]] (* Harvey P. Dale, Oct 08 2012 *)
  • PARI
    2*sqrt(3)/(3*Pi)

Formula

2*sqrt(3)/(3*Pi) = 2*A002194/(3*A000796) = 3*A165922 = (2*sqrt(3)/3)*A049541 = 10*A020832*A049541 = 2*A020760*A049541.

A179589 Decimal expansion of the circumradius of square cupola with edge length 1.

Original entry on oeis.org

1, 3, 9, 8, 9, 6, 6, 3, 2, 5, 9, 6, 5, 9, 0, 6, 7, 0, 2, 0, 3, 1, 5, 4, 0, 5, 3, 9, 4, 3, 1, 9, 9, 8, 7, 6, 4, 6, 7, 3, 5, 2, 2, 5, 6, 3, 8, 6, 6, 2, 3, 8, 8, 7, 9, 9, 3, 0, 9, 3, 6, 3, 2, 3, 1, 5, 0, 3, 7, 3, 5, 9, 2, 0, 3, 7, 9, 8, 0, 2, 9, 9, 1, 1, 4, 8, 2, 8, 3, 0, 0, 5, 0, 1, 4, 4, 6, 8, 0, 3, 0, 4, 2, 9, 4
Offset: 1

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.

Examples

			1.398966325965906702031540539431998764673522563866238879930...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5+2*Sqrt[2]]/2,200]]

Formula

Digits of sqrt(5+2*sqrt(2))/2.

A179638 Decimal expansion of the volume of gyroelongated square pyramid with edge length 1.

Original entry on oeis.org

1, 1, 9, 2, 7, 0, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 5, 5, 9, 0, 6, 0, 1, 9, 8, 4, 2, 8, 3, 7, 7, 2, 5, 1, 5, 8, 1, 5, 5, 2, 6, 2, 5, 5, 1, 8, 2, 8, 8, 6, 2, 0, 1, 5, 7, 0, 7, 7, 9, 3, 1, 4, 2, 1, 8, 8, 8, 2, 2, 7, 4, 7, 2, 4, 5, 5, 2, 5, 8, 3, 8, 6, 3, 0, 8, 2, 0, 7, 7, 0, 6, 7, 0, 0, 1, 8, 1, 1, 7, 7, 4, 7, 6, 3, 8
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated square pyramid: 9 vertices, 20 edges, and 13 faces.

Examples

			1.19270224223223255906019842837725158155262551828862015707793142188822...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(Sqrt[2]+2*Sqrt[4+3*Sqrt[2]])/6,200]]

Formula

Digits of (sqrt(2)+2 sqrt(4+3 sqrt(2)))/6.

A232735 Decimal expansion of the real part of I^(1/7), or cos(Pi/14).

Original entry on oeis.org

9, 7, 4, 9, 2, 7, 9, 1, 2, 1, 8, 1, 8, 2, 3, 6, 0, 7, 0, 1, 8, 1, 3, 1, 6, 8, 2, 9, 9, 3, 9, 3, 1, 2, 1, 7, 2, 3, 2, 7, 8, 5, 8, 0, 0, 6, 1, 9, 9, 9, 7, 4, 3, 7, 6, 4, 8, 0, 7, 9, 5, 7, 5, 0, 8, 7, 6, 4, 5, 9, 3, 1, 6, 3, 4, 4, 0, 3, 7, 9, 3, 7, 0, 0, 1, 1, 2, 4, 5, 8, 1, 2, 0, 7, 3, 6, 9, 2, 5, 1, 6, 4, 0, 1, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232736.
Root of the equation -7 + 56*x^2 - 112*x^4 + 64*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.974927912181823607018131682993931217232785800619997437648...
		

Crossrefs

Cf. A232736 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232737 (real(I^(1/8))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

  • Magma
    R:= RealField(100); Cos(Pi(R)/14); // G. C. Greubel, Sep 19 2022
    
  • Mathematica
    RealDigits[Cos[Pi/14],10,120][[1]] (* Harvey P. Dale, Dec 15 2018 *)
  • SageMath
    numerical_approx(cos(pi/14), digits=120) # G. C. Greubel, Sep 19 2022

Formula

2*this^2 -1 = A073052. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/14,1/14;1/2;1) . - R. J. Mathar, Aug 31 2025
Previous Showing 31-40 of 89 results. Next