cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A277955 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 14", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 3, 7, 11, 23, 43, 87, 171, 343, 683, 1367, 2731, 5463, 10923, 21847, 43691, 87383, 174763, 349527, 699051, 1398103, 2796203, 5592407, 11184811, 22369623, 44739243, 89478487, 178956971, 357913943, 715827883, 1431655767, 2863311531, 5726623063
Offset: 0

Views

Author

Robert Price, Nov 05 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
Essentially the same as A267052. - R. J. Mathar, Nov 09 2016

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Magma
    I:=[1,3,3]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Nov 06 2016
  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=14; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    Table[FromDigits[Part[ca[[i]][[i]],Range[i,2*i-1]],2], {i,1,stages-1}]
    LinearRecurrence[{2, 1, -2}, {1, 3, 3}, 32] (* or *)
    CoefficientList[ Series[(1 + x - 4x^2)/(1 - 2x - x^2 + 2x^3), {x, 0, 31}], x] (* Robert G. Wilson v, Nov 05 2016 *)

Formula

G.f.: (1 + x - 4*x^2)/(1 - 2*x - x^2 + 2*x^3). - Robert G. Wilson v, Nov 05 2016
From Colin Barker, Nov 06 2016: (Start)
a(n) = (3 - 2*(-1)^n + 2^(1+n))/3.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2. (End)
From Paul Curtz, May 08 2024: (Start)
a(2*n) = A007583(n). a(2*n+1) = A163834(n+1).
a(n) = A001045(n+1) + A010673(n).
a(n) = a(n-1) + 2*A078008(n-1). (End)

A352362 Array read by ascending antidiagonals. T(n, k) = L(k, n) where L are the Lucas polynomials.

Original entry on oeis.org

2, 2, 0, 2, 1, 2, 2, 2, 3, 0, 2, 3, 6, 4, 2, 2, 4, 11, 14, 7, 0, 2, 5, 18, 36, 34, 11, 2, 2, 6, 27, 76, 119, 82, 18, 0, 2, 7, 38, 140, 322, 393, 198, 29, 2, 2, 8, 51, 234, 727, 1364, 1298, 478, 47, 0, 2, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 2
Offset: 0

Views

Author

Peter Luschny, Mar 18 2022

Keywords

Examples

			Array starts:
n\k 0, 1,  2,   3,    4,     5,      6,       7,        8, ...
--------------------------------------------------------------
[0] 2, 0,  2,   0,    2,     0,      2,       0,        2, ... A010673
[1] 2, 1,  3,   4,    7,    11,     18,      29,       47, ... A000032
[2] 2, 2,  6,  14,   34,    82,    198,     478,     1154, ... A002203
[3] 2, 3, 11,  36,  119,   393,   1298,    4287,    14159, ... A006497
[4] 2, 4, 18,  76,  322,  1364,   5778,   24476,   103682, ... A014448
[5] 2, 5, 27, 140,  727,  3775,  19602,  101785,   528527, ... A087130
[6] 2, 6, 38, 234, 1442,  8886,  54758,  337434,  2079362, ... A085447
[7] 2, 7, 51, 364, 2599, 18557, 132498,  946043,  6754799, ... A086902
[8] 2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, ... A086594
[9] 2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, ... A087798
A007395|A059100|
    A001477 A079908
		

Crossrefs

Cf. A320570 (main diagonal), A114525, A309220 (variant), A117938 (variant), A352361 (Fibonacci polynomials), A350470 (Jacobsthal polynomials).

Programs

  • Maple
    T := (n, k) -> (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k:
    seq(seq(simplify(T(n - k, k)), k = 0..n), n = 0..10);
  • Mathematica
    Table[LucasL[k, n], {n, 0, 9}, {k, 0, 9}] // TableForm
    (* or *)
    T[ 0, k_] := 2 Mod[k+1, 2]; T[n_, 0] := 2;
    T[n_, k_] := n^k Hypergeometric2F1[1/2 - k/2, -k/2, 1 - k, -4/n^2];
    Table[T[n, k], {n, 0, 9}, {k, 0, 8}] // TableForm
  • PARI
    T(n, k) = ([0, 1; 1, k]^n*[2; k])[1, 1] ;
    export(T)
    for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))

Formula

T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*(k/(k-j))*n^(k-2*j) for k >= 1.
T(n, k) = (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k.
T(n, k) = [x^k] ((2 - n*x)/(1 - n*x - x^2)).
T(n, k) = n^k*hypergeom([1/2 - k/2, -k/2], [1 - k], -4/n^2) for n,k >= 1.

A239229 Euler characteristic of n-holed torus: 2 - 2*n.

Original entry on oeis.org

2, 0, -2, -4, -6, -8, -10, -12, -14, -16, -18, -20, -22, -24, -26, -28, -30, -32, -34, -36, -38, -40, -42, -44, -46, -48, -50, -52, -54, -56, -58, -60, -62, -64, -66, -68, -70, -72, -74, -76, -78, -80, -82, -84, -86, -88, -90, -92, -94, -96, -98, -100, -102
Offset: 0

Views

Author

Eric M. Schmidt, Mar 12 2014

Keywords

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Plane Geometry), p. 450.
  • James Munkres, Topology, 2nd ed., Pearson, 2000.

Crossrefs

Programs

Formula

a(n) = 2 - 2*n.
G.f.: 2*(1-2*x)/(1-x)^2. - Vincenzo Librandi, Feb 01 2015
a(n) = 2*A022958(n+1). - R. J. Mathar, Oct 05 2017
E.g.f.: 2*exp(x)*(1 - x). - Stefano Spezia, Sep 10 2022

A255935 Triangle read by rows: a(n) = Pascal's triangle A007318(n) + A197870(n+1).

Original entry on oeis.org

0, 1, 2, 1, 2, 0, 1, 3, 3, 2, 1, 4, 6, 4, 0, 1, 5, 10, 10, 5, 2, 1, 6, 15, 20, 15, 6, 0, 1, 7, 21, 35, 35, 21, 7, 2, 1, 8, 28, 56, 70, 56, 28, 8, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 2, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 0
Offset: 0

Views

Author

Paul Curtz, Mar 11 2015

Keywords

Comments

Consider the difference table of a sequence with A000004(n)=0's as main diagonal. (Example: A000045(n).) We call this sequence an autosequence of the first kind.
Based on Pascal's triangle, a(n) =
0, T1
1, 2,
1, 2, 0,
1, 3, 3, 2,
etc.
transforms every sequence s(n) in an autosequence of the first kind via the multiplication by the triangle
s0, T2
s0, s1,
s0, s1, s2,
s0, s1, s2, s3,
etc.
Examples.
1) s(n) = A198631(n)/A006519(n+1), the second fractional Euler numbers (see A209308). This yields 0*1, 1*1+2*1/2=2, 1*1+2*1/2+0*0=2, 1*1+3*1/2++3*0+2*(-1/4)=2, ... .
The autosequence is 0 followed by 2's or 2*(0,1,1,1,1,1,1,1,... = b(n)).
b(n), the basic autosequence of the first kind, is not in the OEIS (see A140575 and A054977).
2) s(n) = A164555(n)/A027642(n), the second Bernoulli numbers, yields 0,2,2,3,4,5,6,7,... = A254667(n).
Row sums of T1: A062510(n) = 3*A001045(n).
Antidiagonal sums of T1: A111573(n).
With 0's instead of the spaces, every column, i.e.,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... = A001477(n) with 0 instead of 1 = A254667(n)
0, 0, 0, 3, 6, 10, 15, 21, 28, 36, 45, ... = A161680(n) with 0 instead of 1
0, 0, 0, 2, 4, 10, 20, 35, 56, 84, 120, ...
etc., is an autosequence of the first kind.
With T(0,0) = 1, it is (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 24 2015

Examples

			Triangle starts:
0;
1, 2;
1, 2, 0;
1, 3, 3, 2;
1, 4, 6, 4, 0;
1, 5, 10, 10, 5, 2;
1, 6, 15, 20, 15, 6, 0;
...
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := If[k == n, 2*Mod[n, 2], Binomial[n, k]]; Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 23 2015 *)

Formula

a(n) = Pascal's triangle A007318(n) with main diagonal A010673(n) (= period 2: repeat 0, 2) instead of 1's=A000012(n).
a(n) = reversal abs(A140575(n)).
a(n) = A007318(n) + A197870(n+1).
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = 0, T(1,0) = 1, T(1,1) = 2, T(n,k) = 0 if k>n or if k<0 . - Philippe Deléham, May 24 2015
G.f.: (-1-2*x*y+x^2*y+x^2*y^2)/((x*y+1)*(x*y+x-1)) - 1. - R. J. Mathar, Aug 12 2015

A274073 a(n) = 6^n-(-1)^n.

Original entry on oeis.org

0, 7, 35, 217, 1295, 7777, 46655, 279937, 1679615, 10077697, 60466175, 362797057, 2176782335, 13060694017, 78364164095, 470184984577, 2821109907455, 16926659444737, 101559956668415, 609359740010497, 3656158440062975, 21936950640377857, 131621703842267135
Offset: 0

Views

Author

Colin Barker, Jun 09 2016

Keywords

Crossrefs

Cf. A015540.
Sequences of the type k^n-(-1)^n: A062157 (k=0), A010673 (k=1), A062510 (k=2), A105723 (k=3), A247281 (k=4), A274072 (k=5), this sequence (k=6).

Programs

  • PARI
    concat(0, Vec(7*x/((1+x)*(1-6*x)) + O(x^30)))

Formula

O.g.f.: 7*x/((1+x)*(1-6*x)).
E.g.f.: exp(6*x) - exp(-x).
a(n) = 5*a(n-1) + 6*a(n-2) for n>1.
a(n) = 7*A015540(n).

A350053 a(n) = (2^(3*n + 3 + (-1)^n) - (6 + (-1)^n))/9, for n >= 1.

Original entry on oeis.org

3, 113, 227, 7281, 14563, 466033, 932067, 29826161, 59652323, 1908874353, 3817748707, 122167958641, 244335917283, 7818749353073, 15637498706147, 500399958596721, 1000799917193443, 32025597350190193, 64051194700380387
Offset: 1

Views

Author

Wolfdieter Lang, Jan 20 2022

Keywords

Comments

Labels of nodes at level L = 1 of the Collatz tree with only odd numbers congruent to 1, 3, and 7 modulo 8, named here CToddr.
a(n) is given by the successor of the non-leaf node labels of the (reduced) Collatz tree with odd numbers (named here CTodd) at level 1 given by A198586(n), for n >= 1. See a comment in A347834 for the construction of CTodd. (For all labels of CTodd at level 1 see {A002450(k)}_{k>=2}.) The present sequence gives the labels of the (further) reduced rooted tree CToddr, at level L = 1. Level L = 0 has the root labeled 1, and this node has a directed 1-cycle.
The successor of a node label u of the tree CTodd is given by (4*u - 1)/3 if u == 1 (mod 6), (2*u - 1)/3 if u == 5 (mod 6), and there is no successor if the label u == 3 (mod 6) (a leaf).
This sequence is motivated by a draft of Immo O. Kerner (see A347834 and the link).
Sorted set of all A385109(A198584(i)), i>0 (conjectured but easy to see). - Ralf Stephan, Jun 18 2025

Crossrefs

Programs

  • Mathematica
    a[n_] := (2^(3*n + 3 + (-1)^n) - (6 + (-1)^n))/9; Array[a, 20] (* Amiram Eldar, Jan 21 2022 *) (* or *)
    LinearRecurrence[{0, 65, 0, -64}, {3, 113, 227, 7281}, 20] (* Georg Fischer, Sep 30 2022 *)
  • PARI
    a(n) = (2^(3*n + 3 + (-1)^n))\9 \\ Winston de Greef, Jan 28 2024

Formula

Bisection: a(2*k-1) = (2^(6*k-1) - 5)/9 = A228871(k), a(2*k) = (4^(3*k+2) - 7)/9 = A350054(k), for k >= 1.
a(n) = (2^(3*n+ 2 + b(n)) - (5 + b(n)))/9, with b(n) = 1 + (-1)^n = A010673(n-1), for n >= 1. See the name.
G.f.: Bisection: x*(3 + 32*x)/((1 - x)*(1 - 64*x)) and x*(113 - 64*x)/((1 - x)*(1 - 64*x)).
G.f.: x*(3 + 113*x + 32*x^2 - 64*x^3)/((1 - x^2)*(1 - 64*x^2)).

A021499 Decimal expansion of 1/495.

Original entry on oeis.org

0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0
Offset: 0

Views

Author

Keywords

Comments

0, then repeat 0, 2. [Arkadiusz Wesolowski, Jul 22 2011]

Crossrefs

A010673 shifted right.

Programs

  • Mathematica
    Join[{0,0},RealDigits[1/495,10,120][[1]]] (* or *) PadRight[{0},120,{2,0}] (* Harvey P. Dale, Dec 13 2020 *)

Formula

a(n) = 1 + (-1)^n - 2*0^n = (-1 - A033999(n))*A062157(n). [Arkadiusz Wesolowski, Jul 22 2011]
G.f.: 2*x^2/(1-x^2). - Bruno Berselli, Jul 22 2011

A175880 a(1)=1, a(2)=2. If n >= 3: if n/2 is in the sequence, a(n)=0, otherwise a(n)=n.

Original entry on oeis.org

1, 2, 3, 0, 5, 0, 7, 8, 9, 0, 11, 12, 13, 0, 15, 0, 17, 0, 19, 20, 21, 0, 23, 0, 25, 0, 27, 28, 29, 0, 31, 32, 33, 0, 35, 36, 37, 0, 39, 0, 41, 0, 43, 44, 45, 0, 47, 48, 49, 0, 51, 52, 53, 0, 55, 0, 57, 0, 59, 60, 61, 0, 63, 0, 65, 0, 67, 68, 69, 0, 71, 0, 73, 0, 75, 76, 77, 0, 79, 80
Offset: 1

Views

Author

Adriano Caroli, Dec 05 2010

Keywords

Comments

If n > 0 and n is in the sequence, then a(2*n) = 0. Example: 5 is in the sequence, so a(2*5) = a(10) = 0.
Is this a(n) = n*A039982(n-1), n > 1? [R. J. Mathar, Dec 07 2010]

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a175880 n = a175880_list !! (n-1)
    a175880_list = 1 : f [2..] [2..] where
       f (x:xs) (y:ys) | x == y    = x : (f xs $ delete (2*x) ys)
                       | otherwise = 0 : (f xs (y:ys))
    for_bFile = take 10000 a175880_list
    -- Reinhard Zumkeller, Feb 09 2011
  • Maple
    A110654 := proc(n) 2*n+1-(-1)^n ; %/4 ;end proc:
    A175880 := proc(n) if n <=2 then n; else if type(n,'even') then n-2*procname(A110654(n)) ; else n; end if; end if; end proc:
    seq(A175880(n),n=1..40) ; # R. J. Mathar, Dec 07 2010

Formula

a(n) = n - (1 + (-1)^n) * a((2*n + 1 - (-1)^n)/4), n >= 3.
a(n) = n - A010673(n+1)*a(A110654(n)).

A274072 a(n) = 5^n-(-1)^n.

Original entry on oeis.org

0, 6, 24, 126, 624, 3126, 15624, 78126, 390624, 1953126, 9765624, 48828126, 244140624, 1220703126, 6103515624, 30517578126, 152587890624, 762939453126, 3814697265624, 19073486328126, 95367431640624, 476837158203126, 2384185791015624, 11920928955078126
Offset: 0

Views

Author

Colin Barker, Jun 09 2016

Keywords

Crossrefs

Cf. A015531.
Sequences of the type k^n-(-1)^n: A062157 (k=0), A010673 (k=1), A062510 (k=2), A105723 (k=3), A247281 (k=4), this sequence (k=5), A274073 (k=6).

Programs

  • Mathematica
    LinearRecurrence[{4, 5}, {0, 6}, 30] (* Paolo Xausa, Oct 21 2024 *)
  • PARI
    concat(0, Vec(6*x/((1+x)*(1-5*x)) + O(x^30)))

Formula

O.g.f.: 6*x/((1+x)*(1-5*x)).
E.g.f.: exp(5*x) - exp(-x).
a(n) = 4*a(n-1) + 5*a(n-2) for n>1.
a(n) = 6*A015531(n).

A106664 Expansion of g.f.: (1-3*x+x^2)/((1-x)*(1+x)*(1-2*x+2*x^2)).

Original entry on oeis.org

-1, 1, 2, 5, 4, 1, -8, -15, -16, 1, 32, 65, 64, 1, -128, -255, -256, 1, 512, 1025, 1024, 1, -2048, -4095, -4096, 1, 8192, 16385, 16384, 1, -32768, -65535, -65536, 1, 131072, 262145, 262144, 1, -524288, -1048575, -1048576, 1, 2097152, 4194305, 4194304, 1, -8388608, -16777215, -16777216, 1, 33554432
Offset: 0

Views

Author

Creighton Dement, May 13 2005

Keywords

Comments

Superseeker finds that a(n+2) - a(n) = A090131(n+1) (or with different signs, see A078069).
Floretion Algebra Multiplication Program, FAMP Code: 2ibaseiseq[ + .5'i + .5i' - .5'ii' + .5'jj' + .5'kk' + .5e]

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(  (1-3*x+x^2)/((1-x^2)*(1-2*x+2*x^2)) )); // G. C. Greubel, Sep 08 2021
    
  • Mathematica
    CoefficientList[Series[(1-3x+x^2)/((1-x)(1+x)(1-2x+2x^2)),{x,0,60}],x] (* Harvey P. Dale, Mar 20 2013 *)
  • SageMath
    def A106664_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sinh(x) -exp(x)*(cos(x)-sin(x)) ).egf_to_ogf().list()
    A106664_list(50) # G. C. Greubel, Sep 08 2021

Formula

a(n) = (1/2)*(A010673(n) - A099087(n+2)).
a(n) = (1/2)*(1 - (-1)^n - (1-i)^(n+1) - (1+i)^(n+1)), with i=sqrt(-1). - Ralf Stephan, Nov 16 2010
From G. C. Greubel, Sep 08 2021: (Start)
a(n) = (1-(-1)^n)/2 - 2^((n+1)/2)*cos((n+1)*Pi/4).
a(n) = A000035(n) - A146559(n).
E.g.f.: sinh(x) - exp(x)*(cos(x) - sin(x)). (End)
Previous Showing 11-20 of 23 results. Next