cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 80 results. Next

A301893 Numbers m that set records for the ratio A010846(m)/A000005(m).

Original entry on oeis.org

1, 6, 10, 18, 22, 30, 42, 66, 78, 102, 114, 138, 150, 174, 210, 330, 390, 510, 570, 690, 870, 1110, 1230, 1290, 1410, 1590, 1770, 1830, 2010, 2130, 2190, 2310, 2730, 3570, 3990, 4830, 6090, 6510, 7770, 8610, 9030, 9870, 11130, 12390, 12810, 14070, 14910, 15330
Offset: 1

Views

Author

Michael De Vlieger, Mar 28 2018

Keywords

Comments

We define an "n-regular" number as 1 <= m <= n such that m | n^e with integer e >= 0. The divisor d is a special case of regular number m such that d | n^e with e = 0 or e = 1. Regular numbers m can exceed n; we are concerned only with regulars m <= n herein.
Since divisors are a special case of regular numbers, we examine those numbers m that set records for the ratio of the "regular counting function" A010846(m) and the divisor counting function A000005(m).
There are 2 nonsquarefree terms {18, 150} less than 36,000,000.
The sequence contains no numbers with omega(m) = 1. This is because all regular m divide p^e, and since all the regulars of 1 also divide 1, no primes or prime powers greater than 1 appear in a(n).
The values of A000005(a(n)) are in A000079, i.e., powers 2^e except e = 1.
Aside from the 2 nonsquarefree terms, many terms m are products of A002110(i) * p_j, with j > i between some lower and upper bound outside of when m is in A002110. Example: 30 is in A002110; {42, 66, 78, 102, 114, 138, 174} are A002110(3) * p_j with 2 <= j <= 8.
There are a few terms of the form A002110(i) * p_j * p_k, with i + 1 < j < k. In other words, there is a gap in the indices of the prime divisors between the 3rd and 2nd largest prime divisors, as well as one potentially between the 2nd and largest prime divisors. The smallest m of this type is 46410 = 2 * 3 * 5 * 7 * 13 * 17, followed by 51870 = 2 * 3 * 5 * 7 * 13 * 19.
Conjectures:
1. The only nonsquarefree terms are 18 and 150.
2. Primorials A002110(i) for i = 0 and i > 2 are in the sequence.

Examples

			The number 1 sets a record as it is the first term; the ratio A010846(1)/A000005(1) = 1. Since 2 <= m <= 5 have omega(m) = 1, they too have ratio = 1 and do not appear.
6 is the next term since those numbers 1 <= k <= 6 that divide some nonnegative integer power of 6 are {1, 2, 3, 4, 6}; of these, 4 are divisors, thus we have the ratio 5/4. This exceeds 1, so 6 follows 1 in the sequence. The numbers 7 <= m <= 9 have omega(m) = 1.
10 appears next since the regular m of 10 are {1, 2, 4, 5, 8, 10}; of these 4 divide 10, thus we have ratio 6/4 which exceeds that of 6, so 10 follows 6.
12 is not in the sequence since the regular m of 12 are {1, 2, 3, 4, 6, 8, 9, 12} and 6 of these divide 12, giving us the ratio 8/6 which is less than the 6/4 of 10.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Table[Count[Range@ n, _?(PowerMod[n, Floor@ Log2@ n, #] == 0 &)]/DivisorSigma[0, n], {n, 3000}]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]]
  • PARI
    a000005(n) = if(n==0, 0, numdiv(n)) \\ after Michael Somos in A000005
    a010846(n) = sum(k=1, n, if(gcd(n, k)-1, 0, moebius(k)*(n\k))) \\ after Benoit Cloitre in A010846
    r=0; for(m=1, oo, if(a010846(m)/a000005(m) > r, print1(m, ", "); r=a010846(m)/a000005(m))) \\ Felix Fröhlich, Mar 30 2018

A363794 a(n) = smallest prime(n)-smooth number k such that r(k) >= r(P(n+1)), where r(n) = A010846(n) and P(n) = A002110(n).

Original entry on oeis.org

16, 72, 540, 6300, 92400, 1681680, 36756720, 921470550, 27886608750, 970453984500, 37905932634570
Offset: 1

Views

Author

Michael De Vlieger, Jun 22 2023

Keywords

Comments

Let R = r(P(n)) = A010846(A002110(n)) = A363061(n).
Let S(n) be the sorted tensor product of prime power ranges {p(i)^e : i<=n, e>=0}, e.g., S(1) = A000079, S(2) = A003586, S(3) = A051037, etc.
Let T(n) = A002110(n)*S(n). Note that S(1) = T(1) since omega(A002110(1)) = 1.
Let S(n,i) be the i-th term in S(n).
Then a(n) is the smallest S(n,i), i >= R, such that S(n,i) is also in T. Equivalently, a(n) is the smallest S(n,i), i >= R, such that rad(S(n,i)) = A002110(n), where rad(n) = A007947(n).

Examples

			a(1) = 16 since r(2^4) = 5 and r(6) = 5; numbers in row 16 of A162306 are its divisors {1, 2, 4, 8, 16}, while row 6 of A162306 is {1, 2, 3, 4, 6}.
a(2) = 72 = A003586(18) since r(72) = r(30) = 18. 72 is the 8th term in A003586 that is not in A000961.
a(3) = 540 since r(540) = 69 which exceeds r(210) = 68.
a(4) = 6300 since r(6300) = 290 which exceeds r(2310) = 283, etc.
Table showing the relationship of a(n) to r(P(n)) = A363061(n), with p(n) = prime(n), P(n+1) = A002110(n+1), r(a(n)) = A010846(a(n)), and j the index such that S(r(a(n))) = T(j) = a(n). a(n) = m*P(n).
   n p(n)        P(n+1)          a(n)  r(P(n))  r(a(n))   j    m
  --------------------------------------------------------------
   1   2             6            16        5        5    4    8
   2   3            30            72       18       18    8   12
   3   5           210           540       68       69   13   18
   4   7          2310          6300      283      290   22   30
   5  11         30030         92400     1161     1165   29   40
   6  13        510510       1681680     4843     4848   42   56
   7  17       9699690      36756720    19985    19994   53   72
   8  19     223092870     921470550    83074    83435   68   95
   9  23    6469693230   27886608750   349670   351047   89  125
  10  29  200560490130  970453984500  1456458  1457926  107  150
		

Crossrefs

Programs

  • Mathematica
    nn = 6; rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; f[x_] := FactorInteger[x][[-1, 1]]; S = Array[Product[Prime[i], {i, #}] &, nn + 1]; Table[Set[{p, q}, Prime[n + {0, 1}]]; r = Count[Range[S[[n + 1]]], _?(f[#] <= q &)]; c = k = 1; While[Or[c < r, rad[k] != S[[n]]], If[f[k] <= p, c++]; k++]; k, {n, nn}]

Formula

a(n) >= A363061(n).

A162306 Irregular triangle in which row n contains the numbers <= n whose prime factors are a subset of prime factors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 4, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 4, 5, 8, 10, 1, 11, 1, 2, 3, 4, 6, 8, 9, 12, 1, 13, 1, 2, 4, 7, 8, 14, 1, 3, 5, 9, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 1, 19, 1, 2, 4, 5, 8, 10, 16, 20, 1, 3, 7, 9, 21, 1, 2, 4, 8, 11, 16, 22, 1, 23
Offset: 1

Views

Author

T. D. Noe, Jun 30 2009

Keywords

Comments

Row n begins with 1, ends with n, and has A010846(n) terms.
From Michael De Vlieger, Jul 08 2014: (Start)
Prime p has {1, p} and A010846(p) = 2.
Prime power p^e has {1, p, ..., p^e} and A010846(p^e) = A000005(p^e) = e + 1.
Composite c that are not prime powers have A010846(c) = A000005(c) + A243822(c), where A243822(c) is nonzero positive, since the minimum prime divisor p of c produces at least one semidivisor (e.g., p^2 < c). Thus these have the set of divisors of c and at least one semidivisor p^2. For squareful c that are not prime powers, p^2 may divide c, but p^3 does not. The minimum squareful c = 12, 2^3 does not divide 12 yet is less than 12 and is a product of the minimum prime divisor of 12. All other even squareful c admit a power of 2 that does not divide c, since there must be another prime divisor q > 2. (End)
Numbers 1 <= k <= n such that (floor(n^k/k) - floor((n^k - 1)/k)) = 1. - Michael De Vlieger, May 26 2016
Numbers 1 <= k <= n such that k | n^e with e >= 0. - Michael De Vlieger, May 29 2018

Examples

			n =  6: {1, 2, 3, 4, 6}.
n =  7: {1, 7}.
n =  8: {1, 2, 4, 8}.
n =  9: {1, 3, 9}.
n = 10: {1, 2, 4, 5, 8, 10}.
n = 11: {1, 11}.
n = 12: {1, 2, 3, 4, 6, 8, 9, 12}.
		

Crossrefs

Cf. A007947, A010846 (number of terms in row n), A027750 (terms k that divide n), A243103 (product of terms in row n), A244974 (sum of terms in row n), A272618 (terms k that do not divide n).

Programs

  • Maple
    A:= proc(n) local F, S, s, j, p;
      F:= numtheory:-factorset(n);
      S:= {1};
      for p in F do
        S:= {seq(seq(s*p^j, j=0..floor(log[p](n/s))), s=S)}
      od;
      S
    end proc; map(op,[seq(A(n), n=1..100)]); # Robert Israel, Jul 15 2014
  • Mathematica
    pf[n_] := If[n==1, {}, Transpose[FactorInteger[n]][[1]]]; SubsetQ[lst1_, lst2_] := Intersection[lst1,lst2]==lst1; Flatten[Table[pfn=pf[n]; Select[Range[n], SubsetQ[pf[ # ],pfn] &], {n,27}]]
    (* Second program: *)
    f[x_, y_ : 0] :=
      Block[{m, n, nn, j, k, p, t, v, z},
        n = Abs[x]; nn = If[y == 0, n, y];
        If[n == 1, {1},
          z = Length@
            MapIndexed[Set[{p[#2], m[#2]}, {#1, 0}] & @@
            {#1, First[#2]} &, FactorInteger[n][[All, 1]] ];
        k = Times @@ Array[p[#]^m[#] &, z]; Set[{v, t}, {1, False}];
        Union@ Reap[Do[Set[t, k > nn];
          If[t, k /= p[v]^m[v]; m[v] = 0; v++; If[v > z, Break[]],
          v = 1; Sow[k] ]; m[v]++; k *= p[v], {i, Infinity}] ][[-1, 1]] ] ];
    Array[f, 120] (* Michael De Vlieger, Jun 18 2024 *)

Formula

Union of A027750 and nonzero terms of A272618.
Row n of this sequence is {k <= n : rad(k) | n }, where rad = A007947. - Michael De Vlieger, Jun 18 2024

A008479 Number of numbers <= n with same prime factors as n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 4, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 3, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 9
Offset: 1

Views

Author

Keywords

Comments

For n > 1, a(n) gives the (one-based) index of the row where n is located in arrays A284311 and A285321 or respectively, index of the column where n is in A284457. A285329 gives the other index. - Antti Karttunen, Apr 17 2017

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    V:= Vector(N):
    V[1]:= 1:
    for n from 2 to N do
      if V[n] = 0 then
       S:= {n};
       for p in numtheory:-factorset(n) do
         S := S union {seq(seq(s*p^k,k=1..floor(log[p](N/s))),s=S)};
       od:
       S:= sort(convert(S,list));
       for k from 1 to nops(S) do V[S[k]]:= k od:
    fi
    od:
    convert(V,list); # Robert Israel, May 20 2016
  • Mathematica
    PkTbl=Prepend[ Array[ Times @@ First[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ];1+Array[ Count[ Take[ PkTbl, #-1 ], PkTbl[ [ # ] ] ]&, Length[ PkTbl ] ]
    Count[#, k_ /; k == Last@ #] & /@ Function[s, Take[s, #] & /@ Range@ Length@ s]@ Array[Map[First, FactorInteger@ #] &, 120] (* or *)
    Table[Sum[(Floor[n^k/k] - Floor[(n^k - 1)/k]) (Floor[k^n/n] - Floor[(k^n - 1)/n]), {k, n}], {n, 120}] (* Michael De Vlieger, May 20 2016 *)
  • PARI
    a(n)=my(f=factor(n)[,1], s); forvec(v=vector(#f, i, [1, logint(n, f[i])]), if(prod(i=1, #f, f[i]^v[i])<=n, s++)); s \\ Charles R Greathouse IV, Oct 19 2017
  • Scheme
    (define (A008479 n) (if (not (zero? (A008683 n))) 1 (+ 1 (A008479 (A285328 n))))) ;; Antti Karttunen, Apr 17 2017
    

Formula

a(n) = Sum_{k=1..n} (floor(n^k/k)-floor((n^k-1)/k))*(floor(k^n/n)-floor((k^n-1)/n)). - Anthony Browne, May 20 2016
If A008683(n) <> 0 [when n is squarefree, A005117], a(n) = 1, otherwise a(n) = 1+a(A285328(n)). - Antti Karttunen, Apr 17 2017
a(n) <= A010846(n), with equality if and only if n = 1. - Amiram Eldar, May 25 2025
a(m^(k+1)) = A010846(m^k) when m is squarefree. - Flávio V. Fernandes, Aug 20 2025

A243822 Number of k < n such that rad(k) | n but k does not divide n, where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2, 1, 0, 0, 4, 0, 2, 1, 3, 0, 3, 0, 3, 0, 2, 0, 10, 0, 0, 2, 4, 1, 5, 0, 4, 2, 3, 0, 11, 0, 3, 2, 4, 0, 5, 0, 6, 2, 3, 0, 8, 1, 3, 2, 4, 0, 14, 0, 4, 2, 0, 1, 14, 0, 4, 2, 12, 0, 6, 0, 5, 3, 4, 1, 15, 0, 4, 0, 5, 0, 16, 1, 5, 3, 3, 0, 20, 1, 4, 3, 5, 1, 8, 0, 7, 2, 6
Offset: 1

Views

Author

Michael De Vlieger, Jun 11 2014

Keywords

Comments

Former name: number of "semidivisors" of n, numbers m < n that do not divide n but divide n^e for some integer e > 1. See ACM Inroads paper.

Examples

			From _Michael De Vlieger_, Aug 11 2024: (Start)
Let S(n) = row n of A162306 and let D(n) = row n of A027750.a(2) = 0 since S(2) \ D(2) = {1, 2} \ {1, 2} is null.
a(10) = 2 since S(10) \ D(10) = {1, 2, 4, 5, 8, 10} \ {1, 2, 5, 10} = {4, 8}.a(16) = 0 since S(16) \ D(16) = {1, 2, 4, 8, 16} \ {1, 2, 4, 8, 16} is null, etc.Table of a(n) and S(n) \ D(n):
   n  a(n)  row n of A272618.
  ---------------------------
   6    1   {4}
  10    2   {4, 8}
  12    2   {8, 9}
  14    2   {4, 8}
  15    1   {9}
  18    4   {4, 8, 12*, 16}
  20    2   {8, 16}
  21    1   {9}
  22    3   {4, 8, 16}
  24    3   {9, 16, 18*}
  26    3   {4, 8, 16}
  28    2   {8, 16}
  30   10   {4, 8, 9, 12, 16, 18, 20, 24, 25, 27}
Terms in A272618 marked with an asterisk are counted by A355432. All other terms are counted by A361235. (End)
		

Crossrefs

Programs

Formula

a(n) = A010846(n) - A000005(n) = card({row n of A162306} \ {row n of A027750}).
a(n) = A045763(n) - A243823(n).
a(n) = (Sum_{1<=k<=n, gcd(n,k)=1} mu(k)*floor(n/k)) - tau(n). - Michael De Vlieger, May 10 2016, after Benoit Cloitre at A010846.
From Michael De Vlieger, Aug 11 2024" (Start)
a(n) = 0 for n in A000961, a(n) > 0 for n in A024619.
a(n) = A051953(n) - A000005(n) + 1 = n - A000010(n) - A000005(n) - A243823(n) + 1.
a(n) = A355432(n) + A361235(n).
a(n) = A355432(n) for n in A360768.
a(n) = A361235(n) for n not in A360768.
a(n) = number of terms in row n of A272618.
a(n) = sum of row n of A304570. (End)

Extensions

New name from David James Sycamore, Aug 11 2024

A272618 Irregular array read by rows: n-th row contains (in ascending order) the nondivisors 1 <= k < n such that all the prime divisors p of k also divide n.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 8, 0, 8, 9, 0, 4, 8, 9, 0, 0, 4, 8, 12, 16, 0, 8, 16, 9, 4, 8, 16, 0, 9, 16, 18, 0, 4, 8, 16, 0, 8, 16, 0, 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 0, 0, 9, 27, 4, 8, 16, 32, 25, 8, 16, 24, 27, 32, 0, 4, 8, 16, 32, 9, 27, 16, 25, 32, 0, 4, 8, 9, 12, 16, 18, 24, 27, 28, 32
Offset: 1

Views

Author

Michael De Vlieger, May 03 2016

Keywords

Comments

The k are the "semidivisors" or nondivisor regular numbers of n as counted by A243822(n).
All nonzero terms k are composite and pertain to composite rows n. This is because prime k must either divide or be coprime to n, and k = 1 is both a divisor of and coprime to n.
Row n for prime p contains zero, since numbers 1 <= k < p must either divide or be coprime to prime p.
Row n for prime powers p^e contains zero, since there is only one prime divisor p of p^e and every power 1 <= m <= e of p divides p^e.
Row n = 4 is a special case of composite n that contains zero. This is because 4 is the smallest composite number; there are no composites k < n.
Thus rows n for composite n > 4 contain at least 1 nonzero value.
In base n, 1/a(n) has a terminating expansion with at least 2 places.

Examples

			For n = 12, the numbers 1 <= k < n such that the prime divisors p of k also divide n are {2, 3, 4, 6, 8, 9}; {2, 3, 4, 6} divide n = 12, thus row n = 12 is {8, 9}.
n: k
1: 0
2: 0
3: 0
4: 0
5: 0
6: 4
7: 0
8: 0
9: 0
10: 4 8
11: 0
12: 8 9
13: 0
14: 4 8
15: 9
16: 0
17: 0
18: 4 8 12 16
19: 0
20: 8 16
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, pp. 144-145, Theorem 136.

Crossrefs

Union of A027750 and nonzero terms of a(n) = A162306, thus A000005(n) + A243822(n) = A010846(n).
The union of nonzero terms of a(n) and A272619 = A133995, thus A243822(n) + A243823(n) = A045763(n).

Programs

  • Mathematica
    Table[With[{r = First /@ FactorInteger@ n}, Select[Range@ n,
    And[SubsetQ[r, Map[First, FactorInteger@ #]], ! Divisible[n, #]] &]], {n, 30}] /. {} -> 0 // Flatten (* Michael De Vlieger, May 03 2016 *)

A243823 Quantity of "semitotatives," numbers m < n that are products of at least one prime divisor p of n and one prime q coprime to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 3, 3, 4, 0, 3, 0, 5, 5, 6, 0, 6, 3, 8, 6, 9, 0, 5, 0, 11, 8, 11, 7, 11, 0, 13, 10, 14, 0, 12, 0, 16, 14, 17, 0, 18, 5, 19, 14, 20, 0, 21, 11, 22, 16, 23, 0, 19, 0, 25, 20, 26, 13, 25, 0, 27, 20, 27, 0, 31, 0, 30, 27, 31, 13, 32, 0, 35, 23, 34, 0, 33, 17, 36, 25, 38, 0, 35, 15, 39, 27, 40, 19, 45, 0, 44, 32, 46
Offset: 1

Views

Author

Michael De Vlieger, Jun 11 2014

Keywords

Comments

Semitotatives m < n have a regular factor that is the product of prime divisors of n, and a coprime factor that is the product of primes q that are coprime to n.
The unit fractions of semitotatives have a mixed recurrent expansion in base n (See Hardy & Wright).

Examples

			For n = 10 with prime divisors {2, 5} and prime totatives {3, 7}, the only semitotative is 6. For n = 16, with the prime divisor 2 and the prime totatives {3, 5, 7, 11, 13}, there are four semitotatives {6, 10, 12, 14}.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Sixth Edition, Oxford University Press, 2008, pages 144-145 (last part of Theorem 136).

Crossrefs

Programs

  • Maple
    f:= n -> n + 1 - numtheory:-phi(n) - add(numtheory:-mobius(k)*floor(n/k), k=select(t -> igcd(n,t)=1, [$1..n])):
    map(f, [$1..100]); # Robert Israel, May 10 2016
  • Mathematica
    Table[n + 1 - EulerPhi@ n - Total[MoebiusMu[#] Floor[n/#] &@ Select[Range@ n, CoprimeQ[#, n] &]], {n, 120}] (* Michael De Vlieger, May 10 2016 *)

Formula

a(n) = A045763(n) - A243822(n).
a(n) = n + 1 - phi(n) - Sum_{1 <= k <= n, gcd(n, k) = 1} mu(k)*floor(n/k). - Michael De Vlieger, May 10 2016, after Benoit Cloitre at A010846.

A355432 a(n) = number of k < n such that rad(k) = rad(n) and k does not divide n, where rad(k) = A007947(k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Michael De Vlieger, Feb 22 2023

Keywords

Comments

a(n) = 0 for prime powers and squarefree numbers.

Examples

			a(1) = 18, since 18/6 >= 3. We note that rad(12) = rad(18) = 6, yet 12 does not divide 18.
a(2) = 24, since 24/6 >= 3. rad(18) = rad(24) = 6 and 24 mod 18 = 6.
a(3) = 36, since 36/6 >= 3. rad(24) = rad(36) = 6 and 36 mod 24 = 12.
a(6) = 54, since 54/6 >= 3. m in {12, 24, 36, 48} are such that rad(m) = rad(54) = 6, but none divides 54, etc.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; Table[Which[PrimePowerQ[n], 0, SquareFreeQ[n], 0, True, r = rad[n]; Count[Select[Range[n], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], _?(And[rad[#] == r, Mod[n, #] != 0] &)]], {n, 120}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = my(rn=rad(n)); sum(k=1, n-1, if (n % k, rad(k)==rn)); \\ Michel Marcus, Feb 23 2023

Formula

a(n) > 0 for n in A360768.
a(n) < A243822(n) < A010846(n).
a(n) = A008479(n) - A005361(n). - Amiram Eldar, Oct 25 2024

A369609 Irregular triangle read by rows where row n lists k <= n such that A007947(k) = A007947(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 4, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 8, 16, 17, 6, 12, 18, 19, 10, 20, 21, 22, 23, 6, 12, 18, 24, 5, 25, 26, 3, 9, 27, 14, 28, 29, 30, 31, 2, 4, 8, 16, 32, 33, 34, 35, 6, 12, 18, 24, 36, 37, 38, 39, 10, 20, 40, 41, 42, 43, 22, 44
Offset: 1

Views

Author

Michael De Vlieger, May 09 2024

Keywords

Comments

Differs from A284318 after 27 terms.
Let rad(x) = A007947(x).
Let T(n,k) be the k-th term of row n in this sequence.
Define S(n,k) to be the k-th term in row n of A162306.
T(n,k) = rad(n) * S(n,k), k <= A008479(n).
The number n appears as the last term in row n.

Examples

			First rows of the triangle:
  1;
  2;
  3;
  2, 4;
  5;
  6;
  7;
  2, 4, 8;
  3, 9;
  10;
  11;
  6, 12;
  13;
  14;
  15;
  2, 4, 8, 16;
  17;
  6, 12, 18;
  etc.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]]; Flatten@ Table[r = f[n]; Select[Range[n], f[#] == r &], {n, 44}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    row(n) = my(r=rad(n)); select(x->(rad(x) == r), [1..n]); \\ Michel Marcus, May 11 2024

Formula

Row n of this sequence contains row n of A284318.
Length of row n is A008479(n).
For squarefree n, row n = {n}.
For prime power n = p^m, row n = { p^j : j = 1..m }.

A243103 Product of numbers m with 2 <= m <= n whose prime divisors all divide n.

Original entry on oeis.org

1, 2, 3, 8, 5, 144, 7, 64, 27, 3200, 11, 124416, 13, 6272, 2025, 1024, 17, 35831808, 19, 1024000, 3969, 247808, 23, 859963392, 125, 346112, 729, 2809856, 29, 261213880320000000, 31, 32768, 264627, 18939904, 30625, 26748301344768, 37, 23658496, 369603, 32768000000, 41
Offset: 1

Views

Author

Michael De Vlieger, Aug 19 2014

Keywords

Comments

This sequence is the product of n-regular numbers.
A number m is said to be "regular" to n or "n-regular" if all the prime factors p of m also divide n.
The divisor is a special case of a regular m such that m also divides n in addition to all of its prime factors p | n.
Analogous to A007955 (Product of divisors of n).
If n is 1 or prime, a(n) = n.
If n is a prime power, a(n) = A007955(n).
Note: b-file ends at n = 4619, because a(4620) has more than 1000 decimal digits.
Product of the numbers 1 <= k <= n such that (floor(n^k/k) - floor((n^k - 1)/k)) = 1. - Michael De Vlieger, May 26 2016

Examples

			a(12) = 124416 since 1 * 2 * 3 * 4 * 6 * 8 * 9 * 12 = 124416. These numbers are products of prime factors that are the distinct prime divisors of 12 = {2, 3}.
From _David A. Corneth_, Feb 09 2015: (Start)
Let p# be the product of primes up to p, A002110. Then
a(13#) ~= 8.3069582 * 10 ^ 4133
a(17#) ~= 1.3953000 * 10 ^ 22689
a(19#) ~= 3.8258936 * 10 ^ 117373
a(23#) ~= 6.7960327 * 10 ^ 594048
a(29#) ~= 1.3276817 * 10 ^ 2983168
a(31#) ~= 2.8152792 * 10 ^ 14493041
a(37#) ~= 1.9753840 * 10 ^ 69927040
Up to n = 11# already in the table.
(End)
		

Crossrefs

Cf. A162306 (irregular triangle of regular numbers of n), A010846 (number of regular numbers of n), A244974 (sum of regular numbers of n), A007955, A244052 (record transform of regular numbers of n).

Programs

  • Maple
    A:= proc(n) local F, S, s, j, p;
      F:= numtheory:-factorset(n);
      S:= {1};
      for p in F do
        S:= {seq(seq(s*p^j, j=0..floor(log[p](n/s))), s=S)}
      od;
      convert(S,`*`)
    end proc:
    seq(A(n), n=1..100); # Robert Israel, Feb 09 2015
  • Mathematica
    regularQ[m_Integer, n_Integer] := Module[{omega = First /@ FactorInteger @ m }, If[Length[Select[omega, Divisible[n, #] &]] == Length[omega], True, False]]; a20140819[n_Integer] := Times @@ Flatten[Position[Thread[regularQ[Range[1, n], n]], True]]; a20140819 /@ Range[41]
    regulars[n_] := Block[{f, a}, f[x_] := First /@ FactorInteger@ x; a = f[n];{1}~Join~Select[Range@ n, SubsetQ[a, f@ #] &]]; Array[Times @@ regulars@ # &, 12] (* Michael De Vlieger, Feb 09 2015 *)
    Table[Times @@ Select[Range@ n, (Floor[n^#/#] - Floor[(n^# - 1)/#]) == 1 &], {n, 41}] (* Michael De Vlieger, May 26 2016 *)
  • PARI
    lista(nn) = {vf = vector(nn, n, Set(factor(n)[,1])); vector(nn, n, prod(i=1, n, if (setintersect(vf[i], vf[n]) == vf[i], i, 1)));} \\ Michel Marcus, Aug 23 2014
    
  • PARI
    for(n=1, 100, print1(prod(k=1, n, k^(floor(n^k/k) - floor((n^k - 1)/k))),", ")) \\ Indranil Ghosh, Mar 22 2017
    
  • Python
    from sympy import primefactors
    def A243103(n):
        y, pf = 1, set(primefactors(n))
        for m in range(2,n+1):
            if set(primefactors(m)) <= pf:
                y *= m
        return y # Chai Wah Wu, Aug 28 2014
    
  • Scheme
    ;; A naive implementation, code for A123275bi given under A123275:
    (define (A243103 n) (let loop ((k n) (m 1)) (cond ((= 1 k) m) ((= 1 (A123275bi n k)) (loop (- k 1) (* m k))) (else (loop (- k 1) m)))))
    ;; Antti Karttunen, Mar 22 2017

Formula

a(n) = product of terms of n-th row of irregular triangle A162306(n,k).
a(n) = Product_{k=1..n} k^( floor(n^k/k)-floor((n^k -1)/k) ). - Anthony Browne, Jul 06 2016
From Antti Karttunen, Mar 22 2017: (Start)
a(n) = Product_{k=2..n, A123275(n,k)=1} k.
For n >= 1, A046523(a(n)) = A283990(n).
(End)
Previous Showing 11-20 of 80 results. Next