cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A099547 Odd part of n modulo 6.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 1, 5, 3, 1, 5, 3, 5, 5, 3, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 5, 3, 5, 5, 3, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 1, 5, 3, 1, 5, 3, 5, 5, 3, 1, 1, 3, 1, 5, 3, 1, 5, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 5, 3, 5, 5, 3, 1, 1, 3, 1, 5, 3
Offset: 1

Views

Author

Ralf Stephan, Oct 23 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[n / 2^IntegerExponent[n, 2], 6]; Array[a, 100] (* Amiram Eldar, Aug 29 2024 *)
  • PARI
    a(n) = (n>>valuation(n, 2))%6 \\Charles R Greathouse IV, May 14 2014

Formula

a(n) = A010875(A000265(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. - Amiram Eldar, Aug 29 2024

A130488 a(n) = Sum_{k=0..n} (k mod 10) (Partial sums of A010879).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 90, 91, 93, 96, 100, 105, 111, 118, 126, 135, 135, 136, 138, 141, 145, 150, 156, 163, 171, 180, 180, 181, 183, 186, 190, 195, 201, 208, 216, 225, 225, 226, 228, 231, 235, 240, 246, 253
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 10, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,45,45];; for n in [12..61] do a[n]:=a[n-1]+a[n-10]-a[n-11]; od; a; # G. C. Greubel, Aug 31 2019
    
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,45,45]; [n le 11 select I[n] else Self(n-1) + Self(n-10) - Self(n-11): n in [1..61]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-10*x^9+9*x^10)/((1-x^10)*(1-x)^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Aug 31 2019
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1}, {0,1,3,6,10,15,21,28,36,45, 45}, 60] (* G. C. Greubel, Aug 31 2019 *)
  • PARI
    a(n) = sum(k=0, n, k % 10); \\ Michel Marcus, Apr 28 2018
    
  • Python
    def A130488(n):
        a, b = divmod(n,10)
        return 45*a+(b*(b+1)>>1) # Chai Wah Wu, Jul 27 2022
  • Sage
    def A130488_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-10*x^9+9*x^10)/((1-x^10)*(1-x)^3)).list()
    A130488_list(60) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 45*floor(n/10) + A010879(n)*(A010879(n) + 1)/2.
G.f.: (Sum_{k=1..9} k*x^k)/((1-x^10)*(1-x)).
G.f.: x*(1 - 10*x^9 + 9*x^10)/((1-x^10)*(1-x)^3).

A084300 a(n) = phi(n) mod 6.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 0, 4, 0, 4, 4, 4, 0, 0, 2, 2, 4, 0, 0, 2, 0, 4, 4, 2, 2, 0, 0, 0, 4, 2, 0, 4, 2, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 2, 0, 4, 4, 4, 0, 2, 2, 0, 4, 0, 4, 0, 0, 4, 4, 4, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 4, 4, 0, 4, 0, 2, 4, 4, 0, 0, 2, 0, 4, 0, 2, 0, 0, 0, 4, 4, 2, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jun 02 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000010(n) mod 6.
a(n) = A010875(A000010(n)). - Amiram Eldar, Aug 17 2024

A277544 a(n) = n/6^m mod 6, where 6^m is the greatest power of 6 that divides n.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 5, 2, 1, 2, 3, 4, 5, 3, 1, 2, 3, 4, 5, 4, 1, 2, 3, 4, 5, 5, 1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 5, 2, 1, 2, 3, 4, 5, 3, 1, 2, 3, 4, 5, 4, 1, 2, 3, 4, 5, 5, 1, 2, 3, 4, 5, 2, 1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 5, 2, 1, 2
Offset: 1

Views

Author

Clark Kimberling, Oct 19 2016

Keywords

Comments

a(n) is the rightmost nonzero digit in the base 6 expansion of n.

Examples

			a(8) = (8/6 mod 6) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[n/6^IntegerExponent[n, 6], 6], {n, 1, 160}]
  • PARI
    a(n) = n/6^valuation(n, 6) % 6; \\ Michel Marcus, Oct 20 2016

Formula

a(n) = A244414(n) mod 6. - Michel Marcus, Oct 20 2016

A010887 Simple periodic sequence: repeat 1,2,3,4,5,6,7,8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130486(n)+n+1. - Hieronymus Fischer, Jun 08 2007
1371742/11111111 = 0.123456781234567812345678... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165). - Klaus Brockhaus, May 01 2010

Programs

  • Haskell
    a010887 = (+ 1) . flip mod 8
    a010887_list = cycle [1..8]
    -- Reinhard Zumkeller, Nov 09 2014, Mar 04 2014
    
  • Mathematica
    PadRight[{},90,Range[8]] (* Harvey P. Dale, May 10 2022 *)
  • Python
    def A010887(n): return 1 + (n & 7) # Chai Wah Wu, May 25 2022

Formula

a(n) = 1 + (n mod 8) - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = (1/2)*(9 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n.
Also a(n) = A010877(n) + 1.
G.f.: g(x) = (1/(1-x^8))*Sum_{k=0..7} (k+1)*x^k.
Also: g(x) = (8x^9 - 9x^8 + 1)/((1-x^8)*(1-x)^2). (End)

A082146 Expansion of g.f.: (1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 3, 6, 6, 8, 9, 13, 12, 17, 18, 22, 24, 30, 30, 38, 40, 46, 50, 59, 60, 71, 75, 84, 90, 102, 105, 120, 126, 138, 147, 163, 168, 187, 196, 212, 224, 244, 252, 276, 288, 308, 324, 349, 360, 389, 405, 430, 450, 480, 495, 530, 550, 580, 605, 641, 660, 701, 726
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2003

Keywords

Comments

Poincaré series [or Poincare series] (or Molien series) for (P[x_0,x_1] ⊗ P[x_0,x_1])^(S_2).

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 199.

Crossrefs

Cf. A010875 (n mod 6). Contains A006002 and A212683. - Luce ETIENNE, Aug 14 2018

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70);
    Coefficients(R!( (1-x^10)/(&*[1-x^j: j in [2..6]]) )); // G. C. Greubel, Apr 02 2023
    
  • Maple
    seq(coeff(series((1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)), x,n+1),x,n),n=0..70); # Muniru A Asiru, Aug 15 2018
  • Mathematica
    CoefficientList[Series[(1-x^10)/Product[1-x^(j+1), {j,5}], {x,0,70}], x] (* G. C. Greubel, Apr 02 2023 *)
  • PARI
    Vec((1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)) + O(x^100)) \\ Michel Marcus, Mar 19 2014
    
  • SageMath
    def A082146_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^10)/prod(1-x^j for j in range(2,7)) ).list()
    A082146_list(70) # G. C. Greubel, Apr 02 2023

Formula

a(n) = a(n-1) + a(n-3) - a(n-5) + a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) + a(n-11) + a(n-13) - a(n-14).
G.f.: ( 1+x^2+x^4-x-x^3 ) / ( (1+x^2)*(1-x+x^2)*(1+x)^2*(1+x+x^2)^2*(1-x)^4 ). - R. J. Mathar, Oct 11 2011
a(n) = (120*floor(n/6)^3 + 60*(m+5)*floor(n/6)^2 - 20*(m^5-13*m^4 +60*m^3-116*m^2+74*m-18)*floor(n/6) - (19*m^5-245*m^4+1125*m^3-2185*m^2+1496*m-210) + (m^5-15*m^4+75*m^3-135*m^2+44*m+30)*(-1)^floor(n/6))/240 where m = (n mod 6). - Luce ETIENNE, Aug 14 2018

A319996 Let g = A006530(n), the largest prime factor of n. This filter sequence combines (g mod 6), n/g (A052126), and a single bit A319988(n) telling whether the largest prime factor is unitary.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 7, 12, 13, 14, 5, 15, 7, 16, 17, 10, 5, 18, 19, 12, 20, 21, 5, 22, 7, 23, 13, 10, 24, 25, 7, 12, 17, 26, 5, 27, 7, 16, 28, 10, 5, 29, 30, 31, 13, 21, 5, 32, 33, 34, 17, 10, 5, 35, 7, 12, 36, 37, 24, 22, 7, 16, 13, 38, 5, 39, 7, 12, 40, 21, 41, 27, 7, 42, 43, 10, 5, 44, 33, 12, 13, 26, 5, 45, 46, 16, 17, 10, 24, 47, 7, 48, 28, 49, 5, 22, 7, 34
Offset: 1

Views

Author

Antti Karttunen, Oct 05 2018

Keywords

Comments

Restricted growth sequence transform of triple [A010875(A006530(n)), A052126(n), A319988(n)], with a separate value allotted for a(1).
Many of the same comments as given in A319717 apply also here, except for this filter, the "blind spot" area (where only unique values are possible for a(n)) is different, and contains at least all numbers in A070003. Because presence of 2 or 3 in the prime factorization of n do not force the value of a(n) unique, this is substantially less lax (i.e., more exact) filter than A319717. Here among the first 100000 terms, only 2393 have a unique value, compared to 74355 in A319717.
For all i, j:
a(i) = a(j) => A002324(i) = A002324(j),
a(i) = a(j) => A067029(i) = A067029(j),
a(i) = a(j) => A071178(i) = A071178(j),
a(i) = a(j) => A077462(i) = A077462(j) => A101296(i) = A101296(j),
a(i) = a(j) => A319690(i) = A319690(j).

Examples

			For n = 15 (3*5) and n = 33 (3*11), the mod 6 residue of the largest prime factor is 5, also in both cases it is unitary (A319988(n) = 1), and the quotient n/A006530(n) is equal, in this case 3. Thus a(15) and a(33) are alloted the same running count (13 in this case) by rgs-transform.
For n = 2275 (5^2 * 7 * 13), n = 3325 (5^2 * 7 * 19), 5425 (5^2 * 7 * 31) and 6475 (5^2 * 7 * 37), the largest prime factor = 1 (mod 6), and A052126(n) = 175, thus these numbers are allotted the same running count (394 in this case) by rgs-transform.
		

Crossrefs

Cf. A007528 (positions of 5's), A002476 (of 7's), A112774 (after its initial term gives the position of 10's in this sequence).
Cf. also A319994 (modulo 4 analog).

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A052126(n) = (n/A006530(n));
    A319988(n) = ((n>1)&&(factor(n)[omega(n),2]>1));
    A319996aux(n) = if(1==n,0,[A006530(n)%6, A052126(n), A319988(n)]);
    v319996 = rgs_transform(vector(up_to,n,A319996aux(n)));
    A319996(n) = v319996[n];

A062172 Table T(n,k) by antidiagonals of n^(k-1) mod k [n,k > 0].

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 3, 1, 1, 0, 1, 2, 1, 0, 1, 0, 0, 1, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 1, 4, 3, 1, 5, 1, 3, 1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 3, 7, 5, 1, 1, 1, 1, 1, 1, 0, 1, 8, 1, 4, 7, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 3, 1, 5, 0, 7, 1, 3, 0, 3, 0, 1, 0
Offset: 1

Views

Author

Henry Bottomley, Jun 12 2001

Keywords

Examples

			T(5,3)=5^(3-1) mod 3=25 mod 3=1. Rows start (0,1,1,1,1,...), (0,0,1,0,1,...), (0,1,0,3,1...), (0,0,1,0,1,...), (0,1,1,1,0,...), ...
		

Crossrefs

Cf. A002997, A060154. Rows include A057427, A062173, A062174, A062175, A062176. Columns include A000004, A000035, A011655, A010684 with interleaved 0's, A011558, A010875. Diagonals include all the rows again and A000004 and A009001 unsigned.

A130489 a(n) = Sum_{k=0..n} (k mod 11) (Partial sums of A010880).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 55, 56, 58, 61, 65, 70, 76, 83, 91, 100, 110, 110, 111, 113, 116, 120, 125, 131, 138, 146, 155, 165, 165, 166, 168, 171, 175, 180, 186, 193, 201, 210, 220, 220, 221, 223, 226, 230, 235, 241, 248, 256, 265, 275, 275, 276
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 11, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,45, 55,55];; for n in [13..61] do a[n]:=a[n-1]+a[n-11]-a[n-12]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,45,55,55]; [n le 12 select I[n] else Self(n-1) + Self(n-11) - Self(n-12): n in [1..61]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-11*x^10+10*x^11)/((1-x^11)*(1-x)^3), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Aug 31 2019
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,1,-1}, {0,1,3,6,10,15,21,28,36,45, 55,55}, 60] (* G. C. Greubel, Aug 31 2019 *)
    Accumulate[PadRight[{},80,Range[0,10]]] (* Harvey P. Dale, Jul 21 2021 *)
  • PARI
    a(n) = sum(k=0, n, k % 11); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130489_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-11*x^10+10*x^11)/((1-x^11)*(1-x)^3)).list()
    A130489_list(60) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 55*floor(n/11) + A010880(n)*(A010880(n) + 1)/2.
G.f.: (Sum_{k=1..10} k*x^k)/((1-x^11)*(1-x)).
G.f.: x*(1 - 11*x^10 + 10*x^11)/((1-x^11)*(1-x)^3).

A010885 Period 6: repeat [1, 2, 3, 4, 5, 6].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130484(n)+n+1. - Hieronymus Fischer, Jun 08 2007
41152/333333 = 0.123456123456123456... [Eric Desbiaux, Nov 03 2008]

Crossrefs

Cf. A177158 (decimal expansion of (103+2*sqrt(4171))/162). [From Klaus Brockhaus, May 03 2010]

Programs

Formula

a(n) = 1 + (n mod 6). - Paolo P. Lava, Nov 21 2006
a(n) = A010875(n)+1. G.f.: g(x)=(Sum_{0<=k<6} (k+1)*x^k)/(1-x^6). Also g(x)=(6*x^7-7*x^6+1)/((1-x^6)*(1-x)^2). - Hieronymus Fischer, Jun 08 2007
From Wesley Ivan Hurt, Jun 17 2016: (Start)
G.f.: (1+2*x+3*x^2+4*x^3+5*x^4+6*x^5)/(1-x^6).
a(n) = (21-3*cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/6.
a(n) = a(n-6) for n>5. (End)
Previous Showing 21-30 of 46 results. Next