Original entry on oeis.org
1, 0, -1, -2, -8, 0, 128, 1024, 16384, 0, -4194304, -134217728, -8589934592, 0, 35184372088832, 4503599627370496, 1152921504606846976, 0, -75557863725914323419136, -38685626227668133590597632
Offset: 0
-
R:= RealField(); [Round(2^Floor(Binomial(n,2)/2)*((Sqrt(2)/2 -1/2)*Sin(3*Pi(R)*n/4+Pi(R)/4)+(Sqrt(2)/2+1/2)*Cos(Pi(R)*n/4+Pi(R)/4))): n in [0..50]]; // G. C. Greubel, May 03 2018
-
Table[Round[2^Floor[Binomial[n, 2]/2]*((Sqrt[2]-1)*Sin[(3*n+1)*Pi/4]/2 + (Sqrt[2]+1)*Cos[(n+1)*Pi/4]/2)], {n, 0, 50}] (* G. C. Greubel, May 03 2018 *)
a[ n_] := -Sign[Mod[n - 1, 4]]*(-1)^Quotient[n - 1, 4]*2^Quotient[n (n - 1), 4]; (* Michael Somos, Mar 14 2020 *)
-
for(n=0,50, print1(round(2^floor(binomial(n,2)/2)*((sqrt(2)-1)*sin((3*n+1)*Pi/4)/2 +(sqrt(2)+1)*cos((n+1)*Pi/4)/2)), ", ")) \\ G. C. Greubel, May 03 2018
-
A160636(n)=if(n%4!=1,(-1)^((n+2)\4)<<(binomial(n,2)\2),0) \\ M. F. Hasler, May 09 2018
Comment with an incorrect formula deleted by
M. F. Hasler, May 09 2018
A174102
Triangle read by rows: T(n, m) = floor(binomial(n+1, m)* binomial(n+2, m)/(2*m+2)), 1 <= m <= n.
Original entry on oeis.org
1, 3, 3, 5, 10, 5, 7, 25, 25, 7, 10, 52, 87, 52, 10, 14, 98, 245, 245, 98, 14, 18, 168, 588, 882, 588, 168, 18, 22, 270, 1260, 2646, 2646, 1260, 270, 22, 27, 412, 2475, 6930, 9702, 6930, 2475, 412, 27, 33, 605, 4537, 16335, 30492, 30492, 16335, 4537, 605, 33
Offset: 1
Triangle begins as:
1;
3, 3;
5, 10, 5;
7, 25, 25, 7;
10, 52, 87, 52, 10;
14, 98, 245, 245, 98, 14;
18, 168, 588, 882, 588, 168, 18;
22, 270, 1260, 2646, 2646, 1260, 270, 22;
27, 412, 2475, 6930, 9702, 6930, 2475, 412, 27;
-
[[Floor(Binomial(n+1, k)*Binomial(n+2, k)/(2*k+2)): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Apr 13 2019
-
T[n_, k_] = Floor[Binomial[n+1, k]*Binomial[n+2, k]/(2*(k+1))];
Table[T[n, k], {n,1,12}, {k,1,n}]//Flatten (* modified by G. C. Greubel, Apr 13 2019 *)
-
{T(n,k) = (binomial(n+1,k)*binomial(n+2,k)/(2*k+2))\1};
for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 13 2019
-
[[floor(binomial(n+1,k)*binomial(n+2,k)/(2*k+2)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Apr 13 2019
A215099
a(0)=0, a(1)=1, a(n) = least k>a(n-1) such that k+a(n-2) is prime.
Original entry on oeis.org
0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 18, 24, 25, 29, 34, 38, 39, 41, 44, 48, 53, 55, 56, 58, 71, 73, 78, 84, 85, 89, 94, 102, 103, 109, 120, 124, 131, 133, 138, 144, 145, 149, 162, 164, 169, 173, 178, 180, 181, 187, 192, 196, 197, 201
Offset: 0
Cf.
A062042: a(1) = 2, a(n) = least k>a(n-1) such that k+a(n-1) is a prime.
-
first(n) = my(res = vector(n, i, i-1), k); for(x=3, n, k=res[x-1]+1; while(!isprime(k+res[x-2]), k++); res[x]=k); res \\ Iain Fox, Apr 22 2019 (corrected by Iain Fox, Apr 25 2019)
-
from sympy import prime
prpr = 0
prev = 1
for n in range(77):
print(prpr, end=', ')
b = c = 0
while c<=prev:
c = prime(b+1) - prpr
b+=1
prpr = prev
prev = c
Original entry on oeis.org
0, 0, 2, 6, 11, 17, 25, 35, 46, 58, 72, 88, 105, 123, 143, 165, 188, 212, 238, 266, 295, 325, 357, 391, 426, 462, 500, 540, 581, 623, 667, 713, 760, 808, 858, 910, 963, 1017, 1073, 1131, 1190, 1250, 1312, 1376, 1441, 1507, 1575, 1645, 1716, 1788, 1862, 1938
Offset: 0
-
[Floor(n*(3*n-1)/4): n in [0..60]];
-
Table[Floor[n (3 n - 1)/4], {n, 0, 60}]
CoefficientList[Series[x^2(2+x^2)/((1+x^2)(1-x)^3),{x,0,70}],x] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,0,2,6,11},70] (* Harvey P. Dale, Jan 28 2022 *)
A373584
a(n) is equal to the number of shaded cells in a regular hexagon with side n drawn on a hexagonal grid.
Original entry on oeis.org
1, 7, 13, 19, 31, 49, 67, 85, 109, 139, 169, 199, 235, 277, 319, 361, 409, 463, 517, 571, 631, 697, 763, 829, 901, 979, 1057, 1135, 1219, 1309, 1399, 1489, 1585, 1687, 1789, 1891, 1999, 2113, 2227, 2341, 2461, 2587, 2713, 2839, 2971, 3109, 3247, 3385, 3529
Offset: 1
a(3) = 19 - 6*1 = 13;
a(4) = 37 - 6*3 = 19.
o . o . o
o . . o . o . . o .
o . o . o . o . o . o . o . o
o o . o o . . . o o . . . . . o o . . .
o o o o o o o o o o o o o o o o o o o o o o o o o
o o . o o . . . o o . . . . . o o . . .
o . o . o . o . o . o . o . o
o . . o . o . . o .
o . o . o
1 7 13 19 31
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Nicolay Avilov, Members of the sequence a(1) - a(7).
- Nicolay Avilov, Problem 2663. Snowflakes (in Russian).
- Nicolay Avilov, Illustration a(13) and a(16)
- Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
A024174
a(n) is floor((4th elementary symmetric function of 1,2,..,n)/(3rd elementary symmetric function of 1,2,...,n)).
Original entry on oeis.org
0, 0, 1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 22, 25, 29, 33, 37, 42, 47, 52, 57, 62, 68, 74, 80, 87, 94, 101, 108, 115, 123, 131, 139, 148, 157, 166, 175, 184, 194, 204, 214, 225, 236, 247, 258, 269, 281, 293, 305, 318, 331, 344, 357, 370, 384, 398, 412, 427, 442
Offset: 3
G.f. = x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 6*x^9 + 8*x^10 + 10*x^11 + 13*x^12 + ...
-
Table[Floor[(n - 3) (15 n^3 + 15 n^2 - 10 n - 8)/(120 n (n + 1))], {n, 3, 45}] (* Ivan Neretin, Nov 25 2016 *)
Insert[Table[Floor[1/8 (-2 - 3 n + n^2)], {n, 4, 45}], 0, 1] (* Ralf Steiner, Oct 27 2021 *)
-
{a(n) = if( n<4, 0, (n-3) * (15*n^3 + 15*n^2 - 10*n - 8) \ (120 * n * (n+1)))}; /* Michael Somos, Nov 25 2016 */
A104563
A floretion-generated sequence relating to centered square numbers.
Original entry on oeis.org
0, 1, 3, 5, 8, 13, 19, 25, 32, 41, 51, 61, 72, 85, 99, 113, 128, 145, 163, 181, 200, 221, 243, 265, 288, 313, 339, 365, 392, 421, 451, 481, 512, 545, 579, 613, 648, 685, 723, 761, 800, 841, 883, 925, 968, 1013, 1059, 1105, 1152, 1201, 1251
Offset: 0
-
LinearRecurrence[{3, -4, 4, -3, 1}, {0, 1, 3, 5, 8}, 60] (* Amiram Eldar, Dec 14 2024 *)
-
concat(0, Vec(x*(1 + x)*(1 - x + x^2) / ((1 - x)^3*(1 + x^2)) + O(x^40))) \\ Colin Barker, Apr 29 2019
A215095
a(0)=0, a(1)=1, a(n) = least k>a(n-1) such that k+a(n-2) is a Jacobsthal number.
Original entry on oeis.org
0, 1, 3, 4, 8, 17, 35, 68, 136, 273, 547, 1092, 2184, 4369, 8739, 17476, 34952, 69905, 139811, 279620, 559240, 1118481, 2236963, 4473924, 8947848, 17895697, 35791395, 71582788, 143165576, 286331153, 572662307, 1145324612, 2290649224, 4581298449, 9162596899
Offset: 0
-
prpr = 0
prev = 1
jac = [0]*10000
for n in range(10000):
jac[n] = prpr
curr = prpr*2 + prev
prpr = prev
prev = curr
prpr, prev = 0, 1
for n in range(1, 44):
print(prpr, end=', ')
b = c = 0
while c<=prev:
c = jac[b] - prpr
b+=1
prpr = prev
prev = c
A289708
Number of matchings in the n-triangular honeycomb queen graph.
Original entry on oeis.org
1, 4, 51, 2468, 516950, 514413280, 2620954569792
Offset: 1
Comments