cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 66 results. Next

A244676 Decimal expansion of sum_(n>=1) (H(n)^3/(n+1)^6) where H(n) is the n-th harmonic number.

Original entry on oeis.org

0, 2, 2, 8, 9, 1, 2, 6, 7, 8, 8, 2, 2, 4, 0, 7, 4, 9, 1, 3, 7, 7, 4, 3, 6, 4, 0, 7, 1, 9, 9, 7, 7, 4, 3, 7, 4, 6, 5, 1, 1, 3, 5, 9, 0, 1, 5, 1, 9, 0, 2, 7, 5, 2, 1, 6, 3, 9, 7, 9, 9, 3, 4, 0, 1, 9, 2, 2, 2, 5, 2, 1, 7, 1, 8, 0, 9, 7, 2, 4, 1, 0, 9, 6, 3, 1, 3, 6, 2, 7, 8, 0, 9, 2, 7, 5, 0, 3, 7, 7, 1, 7, 0, 5, 6
Offset: 0

Views

Author

Jean-François Alcover, Jul 04 2014

Keywords

Examples

			0.02289126788224074913774364071997743746511359015190275216397993401922...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); -(37/7560)*Pi(R)^6*Evaluate(L,3) + Evaluate(L,3)^3 - (11/120)*Pi(R)^4*Evaluate(L,5) + Pi(R)^2*Evaluate(L,7)/2 + (197/24)*Evaluate(L,9); // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[197/24*Zeta[9] - 33/4*Zeta[4]*Zeta[5] - 37/8*Zeta[3]*Zeta[6] + Zeta[3]^3 + 3*Zeta[2]*Zeta[7], 10, 104] // First // Prepend[#, 0]&
  • PARI
    default(realprecision, 100);  -37/7560*Pi^6*zeta(3) + zeta(3)^3 - 11/120*Pi^4*zeta(5) + 1/2*Pi^2*zeta(7) + 197/24*zeta(9) \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals -37/7560*Pi^6*zeta(3) + zeta(3)^3 - 11/120*Pi^4*zeta(5) + 1/2*Pi^2*zeta(7) + 197/24*zeta(9).

A016843 a(n) = (4n+3)^7.

Original entry on oeis.org

2187, 823543, 19487171, 170859375, 893871739, 3404825447, 10460353203, 27512614111, 64339296875, 137231006679, 271818611107, 506623120463, 897410677851, 1522435234375, 2488651484819, 3938980639167, 6060711605323, 9095120158391, 13348388671875, 19203908986159
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A004767(n)^7. - Wesley Ivan Hurt, Dec 26 2013
Sum_{n>=0} 1/a(n) = 127*zeta(7)/256 - 61*Pi^7/368640. - Amiram Eldar, Apr 24 2023

A017675 Numerator of sum of -6th powers of divisors of n.

Original entry on oeis.org

1, 65, 730, 4161, 15626, 23725, 117650, 266305, 532171, 101569, 1771562, 506255, 4826810, 3823625, 2281396, 17043521, 24137570, 34591115, 47045882, 32509893, 85884500, 57575765, 148035890, 97201325, 244156251, 12067025, 387952660, 244770825, 594823322
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 65/64, 730/729, 4161/4096, 15626/15625, 23725/23328, 117650/117649, 266305/262144, ...
		

Crossrefs

Cf. A017676 (denominator), A013664, A013665.

Programs

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^6*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017676(n) = zeta(6) (A013664).
Dirichlet g.f. of a(n)/A017676(n): zeta(s)*zeta(s+6).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017676(k) = zeta(7) (A013665). (End)

A017677 Numerator of sum of -7th powers of divisors of n.

Original entry on oeis.org

1, 129, 2188, 16513, 78126, 23521, 823544, 2113665, 4785157, 5039127, 19487172, 9032611, 62748518, 13279647, 56979896, 270549121, 410338674, 205761751, 893871740, 645047319, 1801914272, 628461297, 3404825448, 385391585, 6103593751, 4047279411, 10465138360, 34691791
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 129/128, 2188/2187, 16513/16384, 78126/78125, 23521/23328, 823544/823543, 2113665/2097152, ...
		

Crossrefs

Cf. A017678 (denominator), A013665, A013666.

Programs

  • Magma
    [Numerator(DivisorSigma(7,n)/n^7): n in [1..20]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    Table[Numerator[Total[Divisors[n]^-7]],{n,30}] (* Harvey P. Dale, Nov 29 2014 *)
    Table[Numerator[DivisorSigma[7, n]/n^7], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 7)/n^7)) \\ G. C. Greubel, Nov 07 2018
    

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^7*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017678(n) = zeta(7) (A013665).
Dirichlet g.f. of a(n)/A017678(n): zeta(s)*zeta(s+7).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017678(k) = zeta(8) (A013666). (End)

A321817 a(n) = Sum_{d|n, n/d odd} d^6 for n > 0.

Original entry on oeis.org

1, 64, 730, 4096, 15626, 46720, 117650, 262144, 532171, 1000064, 1771562, 2990080, 4826810, 7529600, 11406980, 16777216, 24137570, 34058944, 47045882, 64004096, 85884500, 113379968, 148035890, 191365120, 244156251, 308915840, 387952660
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Cf. A013665.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^6 &, OddQ[n/#] &]; Array[a, 30] (* Amiram Eldar, Nov 02 2022 *)
  • PARI
    apply( A321817(n)=sumdiv(n,d,if(bittest(n\d,0),d^6)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(6*e) and a(p^e) = (p^(6*e+6)-1)/(p^6-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = 127*zeta(7)/896 = 0.142924... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-6)*(1-1/2^s). - Amiram Eldar, Jan 08 2023

A334668 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^7.

Original entry on oeis.org

1, 127, 277877, 35566069, 2778634972433, 2778624972433, 2288319945032390119, 292904812254103669607, 640582959329009845430509, 640582894792751053318381, 12483149055863937257566687990151, 12483148704882733411491577990151, 783299081298153288298872171970695856067
Offset: 1

Views

Author

Petros Hadjicostas, May 07 2020

Keywords

Comments

Lim_{n -> infinity} a(n)/A334669(n) = A275710 = (63/64)*A013665.

Examples

			The first few fractions are 1, 127/128, 277877/279936, 35566069/35831808, 2778634972433/2799360000000, 2778624972433/2799360000000, ... = A334668/A334669.
		

Crossrefs

Cf. A013665, A275710, A334669 (denominators).

Programs

  • Mathematica
    Numerator @ Accumulate[Table[(-1)^(k + 1)/k^7, {k, 1, 13}]] (* Amiram Eldar, May 08 2020 *)
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^7)); \\ Michel Marcus, May 08 2020

A334669 Denominator of Sum_{k=1..n} (-1)^(k+1)/k^7.

Original entry on oeis.org

1, 128, 279936, 35831808, 2799360000000, 2799360000000, 2305393332480000000, 295090346557440000000, 645362587921121280000000, 645362587921121280000000, 12576291107821424895098880000000, 12576291107821424895098880000000, 789143616376081512994335288360960000000
Offset: 1

Views

Author

Petros Hadjicostas, May 07 2020

Keywords

Comments

Lim_{n -> infinity} A334668(n)/a(n) = A275710 = (63/64)*A013665.

Examples

			The first few fractions are 1, 127/128, 277877/279936, 35566069/35831808, 2778634972433/2799360000000, 2778624972433/2799360000000, ... = A334668/A334669.
		

Crossrefs

Cf. A013665, A275710, A334668 (numerators).

Programs

  • Mathematica
    Denominator @ Accumulate[Table[(-1)^(k + 1)/k^7, {k, 1, 13}]] (* Amiram Eldar, May 08 2020 *)
  • PARI
    a(n) = denominator(sum(k=1, n, (-1)^(k+1)/k^7)); \\ Michel Marcus, May 08 2020

A379814 a(n) = sigma_2(n) * sigma_3(n).

Original entry on oeis.org

1, 45, 280, 1533, 3276, 12600, 17200, 49725, 68887, 147420, 162504, 429240, 373660, 774000, 917280, 1596221, 1425060, 3099915, 2483320, 5022108, 4816000, 7312680, 6449040, 13923000, 10253901, 16814700, 16760800, 26367600, 20536380, 41277600, 28659904, 51117885
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Comments

See A379812 for more links and Ramanujan's general formula.

References

  • Srinivasa Ramanujan, Collected papers, edited by G. H. Hardy et al., Chelsea, 1962, chapter 17, pp. 133-135.

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ DivisorSigma[{2, 3}, n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); sigma(f, 2) * sigma(f, 3);}

Formula

a(n) = A001157(n) * A001158(n).
Multiplicative with a(p^e) = (p^(2*e+2)-1) * (p^(3*e+3)-1) / ((p^2-1) * (p^3-1)).
Dirichlet g.f.: zeta(s) * zeta(s-2) * zeta(s-3) * zeta(s-5) / zeta(2*s-5).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(3) * zeta(4) * zeta(6) / zeta(7) = Pi^10 * zeta(3) / (85050 * zeta(7)) = 1.31261826893951336264... .

A013683 Continued fraction for zeta(7).

Original entry on oeis.org

1, 119, 1, 3, 2, 1, 2, 1, 39, 2, 3, 12, 3, 1, 1, 1, 2, 6, 5, 1, 5, 1, 2, 1, 23, 2, 1, 5, 34, 2, 1, 1, 3, 47, 2, 1, 8, 16, 1, 4, 1, 2, 1, 1, 1, 10, 72, 1, 1, 1, 1, 1, 2, 3, 13, 1, 2, 1, 5, 1, 27, 2, 9283, 1, 36, 1, 1, 1, 1, 3, 3, 23, 27, 5, 2, 4, 1, 3, 16, 1, 4
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013665 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[7],100] (* Harvey P. Dale, Sep 13 2020 *)

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024

A309927 Decimal expansion of Pi^7/Zeta(7).

Original entry on oeis.org

2, 9, 9, 5, 2, 8, 4, 7, 6, 4, 4, 4, 0, 6, 2, 9, 8, 7, 4, 2, 1, 4, 5, 7, 1, 4, 0, 1, 9, 4, 1, 2, 3, 5, 8, 6, 4, 4, 7, 2, 3, 7, 6, 1, 9, 8, 1, 1, 1, 2, 8, 8, 6, 2, 1, 1, 6, 0, 3, 4, 9, 9, 3, 0, 8, 3, 5, 8, 9, 9, 2, 2, 5, 8, 1, 0, 5, 1, 1, 0, 7, 4, 6, 4, 4, 5, 2
Offset: 4

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^7/Zeta[7], 10, 100][[1]] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    Pi^7/zeta(7)

Formula

Pi^7/Zeta(7) = A092735/A013665.

Extensions

More terms from Amiram Eldar, Aug 24 2019
Previous Showing 41-50 of 66 results. Next