cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A085968 Decimal expansion of the prime zeta function at 8.

Original entry on oeis.org

0, 0, 4, 0, 6, 1, 4, 0, 5, 3, 6, 6, 5, 1, 7, 8, 3, 0, 5, 6, 0, 5, 2, 3, 4, 3, 9, 1, 4, 2, 6, 8, 3, 0, 8, 0, 5, 2, 2, 9, 7, 7, 1, 4, 4, 5, 1, 2, 0, 7, 1, 7, 4, 1, 0, 0, 1, 0, 3, 2, 6, 8, 8, 6, 8, 1, 7, 2, 8, 6, 3, 0, 4, 0, 7, 0, 7, 8, 8, 0, 4, 4, 0, 6, 0, 9, 2, 2, 8, 2, 8, 0, 5, 3, 0, 4, 3, 1, 3, 4, 4, 2, 6, 5, 6
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 07 2017

Examples

			0.0040614053665178305605...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4) to A085967 (at 7), this sequence (at 8), A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    [0,0] cat Reverse(IntegerToSequence(Floor(PrimeZeta(8,43)*10^105)));
    // Jason Kimberley, Dec 30 2016
    
  • Mathematica
    s[n_] := s[n] = Sum[ MoebiusMu[k]*Log[Zeta[8*k]]/k, {k, 1, n}] // RealDigits[#, 10, 104]& // First // Prepend[#, 0]&; s[100]; s[n = 200]; While[s[n] != s[n - 100], n = n + 100]; s[n] (* Jean-François Alcover, Feb 14 2013 *)
    RealDigits[ PrimeZetaP[ 8], 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 *)
  • PARI
    sumeulerrat(1/p, 8) \\ Hugo Pfoertner, Feb 03 2020

Formula

P(8) = Sum_{p prime} 1/p^8 = Sum_{n>=1} mobius(n)*log(zeta(8*n))/n.
Equals Sum_{k>=1} 1/A179645(k). - Amiram Eldar, Jul 27 2020

A266554 Decimal expansion of the generalized Glaisher-Kinkelin constant A(7).

Original entry on oeis.org

9, 8, 9, 9, 7, 5, 6, 5, 3, 3, 3, 3, 4, 1, 7, 0, 9, 4, 1, 7, 5, 3, 9, 6, 4, 8, 3, 0, 5, 8, 8, 6, 9, 2, 0, 0, 2, 0, 8, 2, 4, 7, 1, 5, 1, 4, 3, 0, 7, 4, 5, 3, 0, 5, 1, 2, 8, 5, 5, 3, 8, 6, 2, 4, 2, 3, 7, 7, 4, 6, 4, 2, 9, 5, 9, 6, 1, 6, 7, 5, 7, 4, 2, 7, 5, 6, 6, 8, 7, 7, 6, 3, 6
Offset: 0

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 7th Bendersky constant.

Examples

			0.9899756533334170941753964830588692002082471514307453051285538624....
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[8]/8)*(EulerGamma + Log[2*Pi] - Zeta'[8]/Zeta[8]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(7) = exp(H(7)*B(8)/8 - zeta'(-7)) = exp((B(8)/8)*(EulerGamma + log(2*Pi) - (zeta'(8)/zeta(8)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^8-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(8)/8 = -1/240 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024

A266555 Decimal expansion of the generalized Glaisher-Kinkelin constant A(8).

Original entry on oeis.org

9, 9, 1, 7, 1, 8, 3, 2, 1, 6, 3, 2, 8, 2, 2, 1, 9, 6, 9, 9, 9, 5, 4, 7, 4, 8, 2, 7, 6, 5, 7, 9, 3, 3, 3, 9, 8, 6, 7, 8, 5, 9, 7, 6, 0, 5, 7, 3, 0, 5, 0, 7, 9, 2, 4, 7, 0, 7, 6, 5, 9, 9, 3, 4, 0, 9, 5, 0, 2, 3, 7, 9, 3, 4, 2, 1, 7, 6, 1, 9, 0, 9, 3, 0, 9, 1, 2, 3, 8, 8, 8, 6, 1
Offset: 0

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 8th Bendersky constant.

Examples

			0.99171832163282219699954748276579333986785976057305079247...
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[8]/4)*(Zeta[9]/Zeta[8]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(8) = -zeta'(-8) = (B(8)/4)*(zeta(9)/zeta(8)).
A(8) = exp(-8! * Zeta(9) / (2^9 * Pi^8)). - Vaclav Kotesovec, Jan 01 2016

A256919 Decimal expansion of Sum_{k>=1} (zeta(4*k) - 1).

Original entry on oeis.org

0, 8, 6, 6, 6, 2, 9, 7, 6, 2, 6, 5, 7, 0, 9, 4, 1, 2, 9, 3, 2, 9, 7, 4, 6, 0, 2, 6, 2, 4, 9, 9, 9, 7, 5, 4, 7, 7, 7, 1, 7, 1, 8, 6, 6, 7, 9, 8, 0, 9, 1, 6, 6, 7, 2, 1, 2, 4, 6, 8, 7, 5, 7, 8, 0, 4, 9, 2, 2, 8, 7, 6, 0, 4, 0, 8, 4, 4, 9, 8, 9, 1, 2, 8, 2, 1, 7, 2, 2, 4, 1, 2, 0, 3, 0, 2, 2, 5, 4, 0, 6, 1, 7, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.0866629762657094129329746026249997547771718667980916672...
= -3 + Pi^4/90 + Pi^8/9450 + 691*Pi^12/638512875 + ...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 265.

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[7/8 - (Pi/4)*Coth[Pi], 10, 104] // First]

Formula

Equals 7/8 - (Pi/4)*coth(Pi).
Equals Sum_{n>=2} 1/(n^4 - 1). - Vaclav Kotesovec, Dec 08 2020
Equals (1/2)* Sum_{n>=2} 1/(n^2-1) - (1/2)* Sum_{n>=2} 1/(n^2+1) = (3/4 - A100554)/2. - R. J. Mathar, Jan 22 2021

A282060 Coefficients in q-expansion of E_4*(E_2*E_4 - E_6)/720, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 258, 6564, 66052, 390630, 1693512, 5764808, 16909320, 43066413, 100782540, 214358892, 433565328, 815730734, 1487320464, 2564095320, 4328785936, 6975757458, 11111134554, 16983563060, 25801892760, 37840199712, 55304594136, 78310985304, 110992776480
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

Comments

Multiplicative because A013955 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^8*6^1 + 2^8*3^1 + 3^8*2^1 + 6^8*1^1 = 1693512.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), this sequence (phi_{8, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282101 (E_2*E_4^2), A013974 (E_4*E_6 = E_10).

Programs

  • Mathematica
    terms = 25;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*(E2[x]*E4[x] - E6[x])/720 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
    Table[n * DivisorSigma[7, n], {n, 0, 24}] (* Amiram Eldar, Sep 06 2023 *)
    nmax = 40; CoefficientList[Series[x*Sum[k^8*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 7)) \\ Andrew Howroyd, Jul 25 2018

Formula

G.f.: phi_{8, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A282101(n) - A013974(n))/720. - Seiichi Manyama, Feb 10 2017
If p is a prime, a(p) = p^8 + p = A196288(p). - Seiichi Manyama, Feb 10 2017
a(n) = n*A013955(n) for n > 0. - Seiichi Manyama, Feb 18 2017
Sum_{k=1..n} a(k) ~ zeta(8) * n^9 / 9. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(7*e+7)-1)/(p^7-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-8). (End)
G.f. Sum_{k>=1} k^8*x^(k-1)/(1 - x^k)^2. - Vaclav Kotesovec, Aug 01 2025

A351270 Sum of the 7th powers of the squarefree divisors of n.

Original entry on oeis.org

1, 129, 2188, 129, 78126, 282252, 823544, 129, 2188, 10078254, 19487172, 282252, 62748518, 106237176, 170939688, 129, 410338674, 282252, 893871740, 10078254, 1801914272, 2513845188, 3404825448, 282252, 78126, 8094558822, 2188, 106237176, 17249876310, 22051219752, 27512614112
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Inverse Möbius transform of n^7 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023

Examples

			a(4) = 129; a(4) = Sum_{d|4} d^7 * mu(d)^2 = 1^7*1 + 2^7*1 + 4^7*0 = 129.
		

Crossrefs

Cf. A008683 (mu), A013661, A013666.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), this sequence (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^7); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)

Formula

a(n) = Sum_{d|n} d^7 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^7. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^7 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(8)/(8*zeta(2)) = Pi^6/12600 = 0.0763007... . - Amiram Eldar, Nov 10 2022

A351604 a(n) = n^6 * Sum_{d^2|n} 1 / d^6.

Original entry on oeis.org

1, 64, 729, 4160, 15625, 46656, 117649, 266240, 532170, 1000000, 1771561, 3032640, 4826809, 7529536, 11390625, 17043456, 24137569, 34058880, 47045881, 65000000, 85766121, 113379904, 148035889, 194088960, 244156250, 308915776, 387951930, 489419840, 594823321, 729000000
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), this sequence (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A013666.

Programs

  • Mathematica
    f[p_, e_] := p^6*(p^(6*e) - p^(6*Floor[(e - 1)/2]))/(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^6*sumdiv(n, d, if (issquare(d), 1/d^3)); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^6*(p^(6*e) - p^(6*floor((e-1)/2)))/(p^6 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(8)/7 = Pi^8/66150 = 0.143439... . - Amiram Eldar, Nov 13 2022

A352035 Sum of the 7th powers of the odd proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2188, 1, 1, 2188, 78126, 1, 2188, 1, 823544, 80313, 1, 1, 4785157, 1, 78126, 825731, 19487172, 1, 2188, 78126, 62748518, 4785157, 823544, 1, 170939688, 1, 1, 19489359, 410338674, 901669, 4785157, 1, 893871740, 62750705, 78126, 1, 1801914272, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 78126; a(10) = Sum_{d|10, d<10, d odd} d^7 = 1^7 + 5^7 = 78126.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), this sequence (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(7*e+7) - 1)/(p^7 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^7, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)

Formula

a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^7 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
a(n) = A321811(n) - n^7*A000035(n).
Sum_{k=1..n} a(k) ~ c * n^8, where c = (zeta(8)-1)/16 = 0.0002548347... . (End)

A352053 Sum of the 7th powers of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 128, 2187, 16384, 78125, 280064, 823543, 2097152, 4785156, 10000128, 19487171, 35848192, 62748517, 105413632, 170939687, 268435456, 410338673, 612500096, 893871739, 1280016384, 1801914271, 2494358016, 3404825447, 4588568576, 6103593750, 8031810304, 10465138359
Offset: 1

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 10^7 * Sum_{d|10, d<10, d odd} 1/d^7 = 10^7 * (1/1^7 + 1/5^7) = 10000128.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), this sequence (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Mathematica
    A352053[n_]:=DivisorSum[n,1/#^7&,#A352053,50] (* Paolo Xausa, Aug 09 2023 *)
    a[n_] := DivisorSigma[-7, n/2^IntegerExponent[n, 2]] * n^7 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n^7 * sigma(n >> valuation(n, 2), -7) - n % 2; \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = n^7 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^7 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 18 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A321811(n) * A006519(n)^7 - A000035(n).
Sum_{k=1..n} a(k) = c * n^8 / 8, where c = 255*zeta(8)/256 = 1.000155179... . (End)

A009694 a(n) = Product_{i=0..7} floor((n+i)/8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 8748, 11664, 15552, 20736, 27648, 36864, 49152, 65536, 81920, 102400, 128000, 160000, 200000, 250000, 312500
Offset: 0

Keywords

Comments

For n >= 8, a(n) is the maximal product of eight positive integers with sum n. - Wesley Ivan Hurt, Jul 08 2022
A quasipolynomial of order 8 and degree 8. - Charles R Greathouse IV, Nov 06 2022

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), this sequence (k=8), A009714 (k=9), A354600 (k=10).

Programs

  • Mathematica
    Table[Product[Floor[(n+i)/8],{i,0,7}],{n,0,40}] (* Harvey P. Dale, Nov 13 2013 *)
  • PARI
    a(n) = prod(i=0, 7, (n+i)\8); \\ Michel Marcus, Jul 14 2022

Formula

a(8*n) = n^8 (A001016). - Bernard Schott, Nov 06 2022
a(n) = n^8/8^8 + O(n^6). - Charles R Greathouse IV, Nov 06 2022
Sum_{n>=8} 1/a(n) = 1 + zeta(8). - Amiram Eldar, Jan 10 2023
Previous Showing 11-20 of 52 results. Next