cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A373103 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x_5, n) )^4.

Original entry on oeis.org

1, 497, 19603, 254449, 1952501, 9742691, 40351207, 130277873, 385845769, 970392997, 2357933051, 4987963747, 10604470813, 20054549879, 38274877103, 66702270961, 118587792977, 191765347193, 322687567459, 496811926949, 791004710821, 1171892726347, 1801152381623
Offset: 1

Views

Author

Seiichi Manyama, May 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] :=  (p^(9*e+9) - p^(9*e+4) + p^4 - 1)/(p^9-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* Amiram Eldar, May 25 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^4*sigma(d, 9));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*(n/d)^8*sigma(d^2, 8)/sigma(d^2, 4));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, x_3, x_4, x_5, n) )^5.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^4 * sigma_9(d).
a(n) = Sum_{d|n} phi(n/d) * (n/d)^8 * sigma_8(d^2)/sigma_4(d^2).
From Amiram Eldar, May 25 2024: (Start)
Multiplicative with a(p^e) = (p^(9*e+9) - p^(9*e+4) + p^4 - 1)/(p^9-1).
Dirichlet g.f.: zeta(s)*zeta(s-9)/zeta(s-4).
Sum_{k=1..n} a(k) ~ c * n^10 / 10, where c = zeta(10)/zeta(6) = Pi^4/99 = 0.983930212464... . (End)

A017681 Numerator of sum of -9th powers of divisors of n.

Original entry on oeis.org

1, 513, 19684, 262657, 1953126, 93499, 40353608, 134480385, 387440173, 500976819, 2357947692, 1292535097, 10604499374, 2587675113, 1423901192, 68853957121, 118587876498, 7361363287, 322687697780, 256501107891, 113474345696, 302406791499, 1801152661464, 24510295355
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 513/512, 19684/19683, 262657/262144, 1953126/1953125, 93499/93312, 40353608/40353607, 134480385/134217728, ...
		

Crossrefs

Cf. A017682 (denominator), A013667, A013668.

Programs

  • Magma
    [Numerator(DivisorSigma(9,n)/n^9): n in [1..20]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    Table[Numerator[Total[1/Divisors[n]^9]],{n,20}] (* Harvey P. Dale, Aug 26 2013 *)
    Table[Numerator[DivisorSigma[9, n]/n^9], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 9)/n^9)) \\ G. C. Greubel, Nov 07 2018
    

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^9*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017682(n) = zeta(9) (A013667).
Dirichlet g.f. of a(n)/A017682(n): zeta(s)*zeta(s+9).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017682(k) = zeta(10) (A013668). (End)

A017683 Numerator of sum of -10th powers of divisors of n.

Original entry on oeis.org

1, 1025, 59050, 1049601, 9765626, 30263125, 282475250, 1074791425, 3486843451, 200195333, 25937424602, 10329823175, 137858491850, 144768565625, 23066408612, 1100586419201, 2015993900450, 3574014537275, 6131066257802, 5125005407613, 16680163512500, 13292930108525
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 1025/1024, 59050/59049, 1049601/1048576, 9765626/9765625, 30263125/30233088, 282475250/282475249, ...
		

Crossrefs

Cf. A017684 (denominator), A013668, A013669.

Programs

  • Magma
    [Numerator(DivisorSigma(10,n)/n^10): n in [1..20]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    Table[Numerator[Total[Divisors[n]^-10]],{n,20}] (* Harvey P. Dale, Sep 04 2018 *)
    Table[Numerator[DivisorSigma[10, n]/n^10], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 10)/n^10)) \\ G. C. Greubel, Nov 07 2018
    

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^10*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017684(n) = zeta(10) (A013668).
Dirichlet g.f. of a(n)/A017684(n): zeta(s)*zeta(s+10).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017684(k) = zeta(11) (A013669). (End)

A157296 Decimal expansion of 31185/(2*Pi^8).

Original entry on oeis.org

1, 6, 4, 3, 2, 9, 9, 6, 8, 1, 8, 5, 7, 0, 9, 9, 9, 9, 2, 2, 7, 7, 4, 8, 0, 1, 8, 0, 1, 2, 9, 1, 4, 9, 7, 8, 4, 6, 0, 8, 2, 8, 7, 5, 8, 4, 4, 5, 7, 2, 3, 5, 0, 9, 8, 5, 9, 5, 8, 3, 4, 5, 0, 5, 1, 6, 4, 3, 2, 8, 6, 4, 8, 1, 2, 4, 5, 5, 1, 7, 4, 9, 5, 3, 7, 5, 1, 3, 7, 4, 2, 3, 7, 6, 5, 4, 9, 2, 9, 5, 6, 5, 8, 2, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

Equals the asymptotic mean of the abundancy index of the 9-free numbers (numbers that are not divisible by a 9th power other than 1) (Jakimczuk and Lalín, 2022). - Amiram Eldar, May 12 2023

Examples

			1.64329968185709999227... = (1+1/2^2+1/2^4+1/2^6+1/2^8)*(1+1/3^2+1/3^4+1/3^6+1/3^8)*(1+1/5^2+1/5^4+1/5^6+1/5^8)*...
		

Crossrefs

Programs

Formula

Equals Product_{p = primes = A000040} (1+1/p^2+1/p^4+1/p^6+1/p^8). The variant Product_{p} (1+1/p^2+1/p^6+1/p^8) equals A082020*Product_{p} (1+1/p^6) = A082020*zeta(6)/zeta(12) = 10135125/(691*Pi^8).
Equals A013661/A013668 = Product_{i>=1} (1+1/A001248(i)+1/A030514(i)+1/A030516(i)+1/A030514(i)^2) = 15592.5*A092748.

A161004 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 12.

Original entry on oeis.org

4095, 8382465, 362706435, 8583644160, 49987791945, 742460072445, 1349525501415, 8789651619840, 21417452280315, 102325010111415, 116835129114795, 760279114183680, 611574734464785, 2762478701396505, 4427568695944485, 9000603258716160, 8771463461234565
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(10*e - 10) * (p^11-1) / (p-1); a[1] = 4095; a[n_] := 4095 * Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 4095 * prod(i = 1, #f~, (f[i,1]^11 - 1)*f[i,1]^(10*f[i,2] - 10)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 4095 * A160960(n).
Sum_{k=1..n} a(k) ~ c * n^11, where c = (4095/11) * Product_{p prime} (1 + (p^10-1)/((p-1)*p^11)) = 723.3106628... .
Sum_{k>=1} 1/a(k) = (zeta(10)*zeta(11)/4095) * Product_{p prime} (1 - 2/p^11 + 1/p^21) = 0.0002443224366... . (End)

A216426 Numbers of the form a^2*b^3, where a != b and a, b > 1.

Original entry on oeis.org

72, 108, 128, 200, 256, 288, 392, 432, 500, 512, 576, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1944, 2000, 2048, 2187, 2304, 2312, 2592, 2700, 2888, 2916, 3087, 3136, 3200, 3267, 3456, 3528, 3872, 3888, 4000
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Comments

Terms of A216427 that are not 5th powers of squarefree numbers (A113850) and not 10th powers of primes (A030629). - Amiram Eldar, Feb 07 2023

Crossrefs

Cf. A143610.
Subsequence of A216427. - Zak Seidov, Jan 03 2014

Programs

  • Mathematica
    With[{upto=4000},Select[Union[Flatten[{#[[1]]^2 #[[2]]^3,#[[2]]^2 #[[1]]^3}& /@ Subsets[Range[2,Surd[upto,2]],{2}]]],#<=upto&]](* Harvey P. Dale, Jan 04 2014 *)
    pMx = 25; mx = 2^3 pMx^2; t = Flatten[Table[If[a != b, a^2 b^3, 0], {a, 2, mx^(1/2)}, {b, 2, mx^(1/3)}]]; Union[Select[t, 0 < # <= mx &]] (* T. D. Noe, Jan 02 2014 *)
  • PARI
    list(lim)=my(v=List()); for(b=2, sqrtnint(lim\4,3), for(a=2, sqrtint(lim\b^3), if(a!=b, listput(v, a^2*b^3)))); Set(v) \\ Charles R Greathouse IV, Jan 02 2014
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, mobius, primepi
    def A216426(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            j, b, a, d = isqrt(x), integer_nthroot(x,6)[0], integer_nthroot(x,5)[0], integer_nthroot(x,10)[0]
            l, c = 0, n+x-2+primepi(b)+sum(mobius(k)*(j//k**3) for k in range(d+1, b+1))+primepi(d)+sum(mobius(k)*(a//k**2+j//k**3) for k in range(1, d+1))
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = sum(mobius(k)*((k2-1)//k**2) for k in range(1, isqrt(k2-1)+1))
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return bisection(f,n,n) # Chai Wah Wu, Sep 13 2024

Formula

Sum_{n>=1} 1/a(n) = 2 + ((zeta(2)-1)*(zeta(3)-1)-1)/zeta(6) - zeta(5)/zeta(10) - P(6) - P(10) = 0.09117811499514578262..., where P(s) is the prime zeta function. - Amiram Eldar, Feb 07 2023

Extensions

Name corrected by Charles R Greathouse IV, Jan 02 2014

A013686 Continued fraction for zeta(10).

Original entry on oeis.org

1, 1005, 2, 4, 1, 98, 7, 11, 2, 1, 1, 6, 2, 3, 28, 1, 37, 1, 2, 7, 9, 13, 85, 4, 3, 34, 5, 3, 7, 4, 7, 1, 3, 2, 1, 22, 1, 1, 1, 1, 3, 15, 1, 9, 12, 1, 3, 3, 3, 1, 3, 2, 1, 2, 1, 1, 2, 10, 8, 2, 2, 11, 54, 4, 5, 1, 2, 2, 1, 3, 2, 1, 19, 4, 5, 1, 2, 2, 7, 1, 200
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013668 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[10], 100] (* Paolo Xausa, Jul 03 2024 *)

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024

A160964 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 11.

Original entry on oeis.org

2047, 2094081, 60435628, 1072169472, 4997558082, 61825647444, 96371138776, 548950769664, 1189554465924, 5112501917886, 5309390815620, 31654731491328, 23516361067738, 98587674967848, 147547904812968, 281062794067968, 257921219638566, 1216914218640252
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(9*e - 9) * (p^10-1) / (p-1); a[1] = 2047; a[n_] := 2047 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 2047 * prod(i = 1, #f~, (f[i,1]^10 - 1)*f[i,1]^(9*f[i,2] - 9)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 2047 * A160957(n).
Sum_{k=1..n} a(k) ~ c * n^10, where c = (2047/10) * Product_{p prime} (1 + (p^9-1)/((p-1)*p^10)) = 397.5922753... .
Sum_{k>=1} 1/a(k) = (zeta(9)*zeta(10)/2047) * Product_{p prime} (1 - 2/p^10 + 1/p^19) = 0.0004890150305... . (End)

A258331 Sum of the cubes of the divisors of n^3.

Original entry on oeis.org

1, 585, 20440, 299593, 1968876, 11957400, 40471600, 153391689, 402321277, 1151792460, 2359720584, 6123680920, 10609328380, 23675886000, 40243825440, 78536544841, 118612018980, 235357947045, 322734750520, 589861467468, 827239504000, 1380436541640
Offset: 1

Views

Author

Wesley Ivan Hurt, May 26 2015

Keywords

Examples

			For n=2, the divisors of 2^3 = 8 are 1, 2, 4 and 8. The sum of the cubes of these divisors is 1^3+2^3+4^3+8^3 = 585, therefore a(2) = 585.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(3, n^3): n in [1..50]]; // Vincenzo Librandi, May 27 2015
    
  • Maple
    with(numtheory): A258331:=n->sigma[3](n^3): seq(A258331(n), n=1..50);
  • Mathematica
    Table[DivisorSigma[3, n^3], {n, 50}]
  • PARI
    a(n)=sigma(n^3,3) \\ Charles R Greathouse IV, May 27 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A258331(n): return prod((p**((3*e+1)*3)-1)//(p**3-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023
  • Sage
    [sigma(n^3, 3) for n in (1..50)] # Bruno Berselli, May 27 2015
    

Formula

a(n) = sigma_3(n^3) = A001158(A000578(n)).
From Amiram Eldar, Nov 05 2022: (Start)
Multiplicative with a(p^e) = (p^(9*e + 3) - 1)/(p^3 - 1).
Sum_{k=1..n} a(k) ~ c * n^10, where c = (zeta(10)/10) * Product_{p prime} (1 + 1/p^4 + 1/p^7) = 0.1087440273... . (End)

A280021 Expansion of phi_{11, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 2052, 177156, 4202512, 48828150, 363524112, 1977326792, 8606744640, 31382654013, 100195363800, 285311670732, 744500215872, 1792160394206, 4057474577184, 8650199741400, 17626613022976, 34271896307922, 64397206034676, 116490258898580, 205200886312800
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2017

Keywords

Comments

Multiplicative because A013957 is. - Andrew Howroyd, Jul 23 2018

Crossrefs

Cf. A282097 (phi_{3, 2}), A282099 (phi_{5, 2}), A282751 (phi_{7, 2}), A282753 (phi_{9, 2}), this sequence (phi_{11, 2}).
Cf. A282549 (E_2*E_4^3), A282792 (E_2^2*E_4*E_6), A282576 (E_2*E_6^2), A058550 (E_4^2*E_6 = E_14).
Cf. A013957 (sigma_9(n)), A282254 (n*sigma_9(n)), this sequence (n^2*sigma_9(n)).
Cf. A013668 (zeta(10)).

Programs

  • Mathematica
    Table[If[n>0, n^2 * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    for(n=0, 20, print1(if(n==0, 0, n^2 * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017

Formula

a(n) = n^2*A013957(n) for n > 0.
a(n) = (6*A282549(n) - 5*A282792(n) + 4*A282576(n) - 5*A058550(n))/1728.
Sum_{k=1..n} a(k) ~ zeta(10) * n^12 / 12. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(9*e+9)-1)/(p^9-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-11). (End)
Previous Showing 31-40 of 44 results. Next