cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A161010 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 14.

Original entry on oeis.org

1, 8191, 797161, 33550336, 305175781, 6529545751, 16148168401, 137422176256, 423644039001, 2499694822171, 3452271214393, 26745019396096, 25239592216021, 132269647372591, 243274230757741, 562881233944576, 619036127056621
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^13 such that the quotient group Z^13 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 13 of A263950.

Programs

  • Maple
    f:= proc(n) local t; mul(t[1]^(12*t[2]-12)*(t[1]^13-1)/(t[1]-1), t = ifactors(n)[2]) end proc:
    seq(f(n),n=1..100); # Robert Israel, Dec 08 2015
  • Mathematica
    b = 14; Table[Sum[MoebiusMu[n/d] d^(b - 1), {d, Divisors@ n}]/EulerPhi@ n, {n, 17}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(12*e - 12) * (p^13-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^12, d, if(ispower(d, 13), moebius(sqrtnint(d, 13))*sigma(n^12/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^13 - 1)*f[i,1]^(12*f[i,2] - 12)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_13(n)/J_1(n) where J_13 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(12e-12) * (p^13-1) / (p-1).
For squarefree n, a(n) = A000203(n^12). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^13, where c = (1/13) * Product_{p prime} (1 + (p^12-1)/((p-1)*p^13)) = 0.14949521105... .
Sum_{k>=1} 1/a(k) = zeta(12)*zeta(13) * Product_{p prime} (1 - 2/p^13 + 1/p^25) = 1.0001233729754... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^13). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A347331 Decimal expansion of 691 * Pi^6 / 675675.

Original entry on oeis.org

9, 8, 3, 1, 9, 4, 4, 8, 3, 6, 8, 0, 0, 7, 6, 0, 2, 1, 7, 3, 8, 0, 8, 6, 5, 5, 8, 7, 2, 1, 0, 1, 5, 5, 0, 3, 1, 8, 9, 0, 2, 9, 2, 1, 0, 6, 4, 7, 1, 3, 5, 4, 0, 0, 3, 2, 6, 0, 2, 0, 1, 2, 1, 4, 3, 6, 3, 5, 4, 5, 9, 9, 1, 4, 0, 2, 1, 3, 8, 5, 6, 5, 5, 5, 2, 4, 0
Offset: 0

Views

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.9831944836800760217380865587210155031...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[691 * Pi^6 / 675675, 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals zeta(12) / zeta(6).
Equals Sum_{k>=1} A008836(k) / k^6.
Equals Product_{p prime} 1/(1+p^(-6)). [corrected by Amiram Eldar, Jun 06 2023]

Extensions

Data corrected by Amiram Eldar, Jun 06 2023

A017685 Numerator of sum of -11th powers of divisors of n.

Original entry on oeis.org

1, 2049, 177148, 4196353, 48828126, 30248021, 1977326744, 8594130945, 31381236757, 50024415087, 285311670612, 185843885311, 1792160394038, 506442812307, 2883268288216, 17600780175361, 34271896307634, 21433384705031, 116490258898220, 102450026512239, 350279478046112
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017686 (denominator), A013669, A013670.

Programs

  • Magma
    [Numerator(DivisorSigma(11,n)/n^11): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Numerator[Total[Divisors[n]^-11]],{n,20}] (* Harvey P. Dale, Aug 26 2012 *)
    Table[Numerator[DivisorSigma[11, n]/n^11], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 11)/n^11)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017686(n) = zeta(11) (A013669).
Dirichlet g.f. of a(n)/A017686(n): zeta(s)*zeta(s+11).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017686(k) = zeta(12) (A013670). (End)

A017687 Numerator of sum of -12th powers of divisors of n.

Original entry on oeis.org

1, 4097, 531442, 16781313, 244140626, 1088658937, 13841287202, 68736258049, 282430067923, 500122072361, 3138428376722, 1486382423891, 23298085122482, 28353876833297, 129746582562692, 281543712968705, 582622237229762, 1157115988280531, 2213314919066162, 2048500130460969
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017688 (denominator), A013670, A013671.

Programs

  • Magma
    [Numerator(DivisorSigma(12,n)/n^12): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Numerator[DivisorSigma[12, n]/n^12], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 12)/n^12)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017688(n) = zeta(12) (A013670).
Dirichlet g.f. of a(n)/A017688(n): zeta(s)*zeta(s+12).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017688(k) = zeta(13) (A013671). (End)

A256920 Decimal expansion of Sum_{k>=1} (-1)^k*(zeta(4k)-1) (negated).

Original entry on oeis.org

0, 7, 8, 4, 7, 7, 5, 7, 9, 6, 6, 7, 1, 3, 6, 8, 3, 8, 3, 1, 8, 0, 2, 2, 1, 9, 3, 2, 4, 5, 7, 1, 9, 2, 3, 5, 0, 4, 6, 6, 7, 2, 2, 1, 7, 3, 2, 7, 2, 9, 1, 3, 2, 7, 5, 8, 7, 4, 8, 6, 6, 4, 5, 7, 9, 3, 8, 0, 8, 4, 4, 8, 0, 6, 1, 6, 8, 1, 1, 1, 7, 4, 5, 7, 3, 1, 9, 4, 3, 5, 4, 1, 6, 6, 6, 2, 8, 6, 3, 8, 3, 1, 6, 6, 7, 2
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			-0.07847757966713683831802219324571923504667221732729...
= 1 - Pi^4/90 + Pi^8/9450 - 691*Pi^12/638512875 + ...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 265.

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[1 + (Pi/(2 Sqrt[2]))*(Sin[Pi*Sqrt[2]] + Sinh[Pi*Sqrt[2]]) / (Cos[Pi*Sqrt[2]] - Cosh[Pi*Sqrt[2]]), 10, 105] // First]

Formula

1 + (Pi/(2*Sqrt(2)))*(sin(Pi*sqrt(2)) + sinh(Pi*sqrt(2))) / (cos(Pi*sqrt(2)) - cosh(Pi*sqrt(2))).
Equals Sum_{k>=2} 1/(k^4 + 1). - Amiram Eldar, Jul 11 2020

A282548 Expansion of phi_{12, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 4098, 531444, 16785412, 244140630, 2177857512, 13841287208, 68753047560, 282431130813, 1000488301740, 3138428376732, 8920506494928, 23298085122494, 56721594978384, 129747072969720, 281612482805776, 582622237229778, 1157402774071674
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2017

Keywords

Comments

Multiplicative because A013959 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), this sequence (phi_{12, 1}).
Cf. A282549 (E_2*E_4^3), A282576 (E_2*E_6^2), A058550 (E_14).
Cf. A013670.

Programs

  • Mathematica
    Table[n * DivisorSigma[11, n], {n, 0, 18}] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 11)) \\ Andrew Howroyd, Jul 25 2018

Formula

a(n) = n*A013959(n) for n > 0.
a(n) = (441*A282549(n) + 250*A282576(n) - 691*A058550(n))/65520.
Sum_{k=1..n} a(k) ~ zeta(12) * n^13 / 13. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(11*e+11)-1)/(p^11-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-12). (End)

A321815 Sum of 11th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 177148, 1, 48828126, 177148, 1977326744, 1, 31381236757, 48828126, 285311670612, 177148, 1792160394038, 1977326744, 8649804864648, 1, 34271896307634, 31381236757, 116490258898220, 48828126, 350279478046112, 285311670612, 952809757913928
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=11 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • GAP
    List(List(List([1..25],j->DivisorsInt(j)),i->Filtered(i,k->IsOddInt(k))),m->Sum(m,n->n^11)); # Muniru A Asiru, Dec 07 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, #^11&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321815(n)=sigma(n>>valuation(n,2),11), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321815(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),11)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013959(A000265(n)) = sigma_11(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^11*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(11*e+11)-1)/(p^11-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = zeta(12)/24 = 691*Pi^12/15324309000 = 0.0416769... . (End)

A378768 Squares of powerful numbers that are not prime powers.

Original entry on oeis.org

1296, 5184, 10000, 11664, 20736, 38416, 40000, 46656, 50625, 82944, 104976, 153664, 160000, 186624, 194481, 234256, 250000, 331776, 419904, 455625, 456976, 614656, 640000, 746496, 810000, 937024, 944784, 1000000, 1185921, 1265625, 1327104, 1336336, 1500625, 1679616
Offset: 1

Views

Author

Michael De Vlieger, Dec 06 2024

Keywords

Comments

Contained in A286708, which is a proper subset of A126706.

Crossrefs

Programs

  • Mathematica
    With[{nn = 2000}, Select[Rest@ Union[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}] ], Not@*PrimePowerQ]^2]
  • Python
    from math import isqrt
    from sympy import integer_nthroot, primepi, mobius
    def A378768(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length()))
        return bisection(f, n, n)**2 # Chai Wah Wu, Dec 08 2024

Formula

a(n) = A286708(n)^2.
Intersection of A000290 and A286708.
Intersection of A000290 and A372695.
Sum_{n>=1} 1/a(n) = zeta(4)*zeta(6)/zeta(12) - Sum_{p prime} (1/(p^4-p^2)) - 1 = 0.0013772572536044025109... . - Amiram Eldar, Dec 10 2024

A369634 Decimal expansion of the infinite product of the Zeta Functions with arguments that are multiples of 3.

Original entry on oeis.org

1, 2, 2, 5, 7, 0, 4, 7, 0, 5, 1, 2, 8, 4, 9, 7, 4, 0, 9, 5, 2, 0, 4, 5, 7, 6, 7, 1, 5, 8, 8, 9, 7, 4, 4, 8, 2, 4, 8, 9, 9, 3, 3, 8, 4, 2, 2, 3, 2, 2, 4, 5, 5, 9, 6, 6, 7, 6, 2, 6, 9, 2, 8, 7, 0, 1, 1, 9, 1, 8, 0, 9, 1, 8, 3, 7, 3, 5, 5, 4, 9, 5, 3, 0, 7, 6, 9, 9, 5, 6, 1, 0, 4, 2, 7, 1, 3, 1, 4, 9, 7, 3, 6, 7, 8
Offset: 1

Views

Author

R. J. Mathar, Jan 28 2024

Keywords

Comments

Dirichlet generating function of A000688 evaluated at s=3.

Examples

			1.22570470512849740952045767158897448248993384223224...
		

Crossrefs

Programs

  • Maple
    evalf(product(Zeta(3*k), k = 1 .. infinity), 120) # Amiram Eldar, Jan 28 2024
  • PARI
    prodinf(k=1,zeta(3*k)) \\ Amiram Eldar, Jan 28 2024

Formula

Equals Product_{k>=1} zeta(3*k) = A002117 * A013664 * A013667 * A013670 *...

A013688 Continued fraction for zeta(12).

Original entry on oeis.org

1, 4063, 1, 1, 1, 1, 3, 14, 4, 5, 1, 8, 3, 1, 142, 1, 2, 1, 2, 2, 24, 1, 3, 20, 1, 1, 1, 60, 4, 1, 12, 1, 1, 1, 4, 23, 12, 1, 3, 11, 1, 2, 1, 13, 3, 16, 1, 91, 2, 2, 8, 1, 1, 1, 62, 1, 7, 1, 2, 15, 2, 5, 4, 1, 8, 1, 1, 20, 2, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013670 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[12], 100] (* Paolo Xausa, Jul 03 2024 *)

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024
Previous Showing 21-30 of 33 results. Next