cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A013677 Decimal expansion of zeta(19).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 9, 0, 8, 2, 1, 2, 7, 1, 6, 5, 5, 3, 9, 3, 8, 9, 2, 5, 6, 5, 6, 9, 5, 7, 7, 9, 5, 1, 0, 1, 3, 5, 3, 2, 5, 8, 5, 7, 1, 1, 4, 4, 8, 3, 8, 6, 3, 0, 2, 3, 5, 9, 3, 3, 0, 4, 6, 7, 6, 1, 8, 2, 3, 9, 4, 9, 7, 0, 5, 3, 4, 1, 3, 0, 9, 3, 1, 2, 6, 6, 4, 2, 2, 7, 1, 1, 8, 0, 7, 6, 3, 0
Offset: 1

Views

Author

Keywords

Examples

			1.0000019082127165539389256569577951013532585711448386302359330467618239...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Crossrefs

Programs

Formula

zeta(19) = Sum_{n >= 1} (A010052(n)/n^(19/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(19/2) ). - Mikael Aaltonen, Feb 23 2015
zeta(19) = Product_{k>=1} 1/(1 - 1/prime(k)^19). - Vaclav Kotesovec, May 02 2020

A010801 13th powers: a(n) = n^13.

Original entry on oeis.org

0, 1, 8192, 1594323, 67108864, 1220703125, 13060694016, 96889010407, 549755813888, 2541865828329, 10000000000000, 34522712143931, 106993205379072, 302875106592253, 793714773254144, 1946195068359375, 4503599627370496, 9904578032905937, 20822964865671168
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A000584 (5th powers), A008455 (11th powers), A013671 (zeta(11)).

Programs

Formula

a(n) mod 10 = n mod 10. - Reinhard Zumkeller, Dec 06 2004
Totally multiplicative with a(p) = p^13 for primes p. Multiplicative with a(p^e) = p^(13*e). - Jaroslav Krizek, Nov 01 2009
G.f.: x*(x^12 + 8178*x^11 + 1479726*x^10 + 45533450*x^9 + 423281535*x^8 + 1505621508*x^7 + 2275172004*x^6 + 1505621508*x^5 + 423281535*x^4 + 45533450*x^3 + 1479726*x^2 + 8178*x + 1) / (x - 1)^14. - Colin Barker, Sep 25 2014
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(13) (A013671).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4095*zeta(13)/4096. (End)

A138031 a(n) = prime(n)^13.

Original entry on oeis.org

8192, 1594323, 1220703125, 96889010407, 34522712143931, 302875106592253, 9904578032905937, 42052983462257059, 504036361936467383, 10260628712958602189, 24417546297445042591, 243569224216081305397, 925103102315013629321, 1718264124282290785243
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A010801 (13th powers).
Cf. A000040 (primes), A013671 (zeta(13)).

Programs

Formula

From Amiram Eldar, Jan 24 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(13)/zeta(26).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(13) = 1/A013671. (End)

Extensions

More terms from Vincenzo Librandi, Mar 27 2014

A013960 a(n) = sigma_12(n), the sum of the 12th powers of the divisors of n.

Original entry on oeis.org

1, 4097, 531442, 16781313, 244140626, 2177317874, 13841287202, 68736258049, 282430067923, 1000244144722, 3138428376722, 8918294543346, 23298085122482, 56707753666594, 129746582562692, 281543712968705, 582622237229762, 1157115988280531, 2213314919066162
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(12, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Mathematica
    DivisorSigma[12,Range[20]] (* Harvey P. Dale, Jan 28 2015 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^12*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 12); \\ Amiram Eldar, Oct 29 2023
  • Sage
    [sigma(n,12) for n in range(1,17)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^12*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-12)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(12*e+12)-1)/(p^12-1).
Sum_{k=1..n} a(k) = zeta(13) * n^13 / 13 + O(n^14). (End)

A293904 Decimal expansion of zeta(21).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 4, 7, 6, 9, 3, 2, 9, 8, 6, 7, 8, 7, 8, 0, 6, 4, 6, 3, 1, 1, 6, 7, 1, 9, 6, 0, 4, 3, 7, 3, 0, 4, 5, 9, 6, 6, 4, 4, 6, 6, 9, 4, 7, 8, 4, 9, 3, 7, 6, 0, 0, 2, 0, 7, 4, 8, 7, 3, 7, 6, 5, 9, 6, 8, 3, 9, 0, 8, 7, 8, 9, 8, 1, 5, 9, 8, 3, 3, 8, 7, 6, 6
Offset: 1

Views

Author

Frank Ellermann, Oct 19 2017

Keywords

Comments

Web searches find 1.0000004769329867878 in Python tools. Simon Plouffe published 1000 digits for zeta(9) up to zeta(2051) many years ago.

Examples

			1.000000476932986787806...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[21], 10, 100][[1]] (* Amiram Eldar, May 31 2021 *)

A321557 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^12.

Original entry on oeis.org

1, 4095, 531442, 16773119, 244140626, 2176254990, 13841287202, 68702695423, 282430067923, 999755863470, 3138428376722, 8913939907598, 23298085122482, 56680071092190, 129746582562692, 281406240452607, 582622237229762, 1156551128144685, 2213314919066162, 4094999772632494
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013671.

Programs

  • Mathematica
    f[p_, e_] := (p^(12*e + 12) - 1)/(p^12 - 1); f[2, e_] := (2047*2^(12*e + 1) + 1)/4095; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321557(n)=sumdiv(n, d, (-1)^(n\d-1)*d^12), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^12*x^k/(1 + x^k). - Seiichi Manyama, Nov 25 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (2047*2^(12*e+12)+1)/4095, and a(p^e) = (p^(12*e+12) - 1)/(p^12 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^13, where c = 315*zeta(13)/4096 = 0.0769137... . (End)

A321816 Sum of 12th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 531442, 1, 244140626, 531442, 13841287202, 1, 282430067923, 244140626, 3138428376722, 531442, 23298085122482, 13841287202, 129746582562692, 1, 582622237229762, 282430067923, 2213314919066162, 244140626, 7355841353205284, 3138428376722
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=12 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321815 (analog for 2nd .. 11th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^12&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321816(n)=sigma(n>>valuation(n,2),12), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321816(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),12)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013960(A000265(n)) = sigma_12(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^12*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(12*e+12)-1)/(p^12-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^13, where c = zeta(13)/26 = 0.0384662... . (End)

A077455 a(n) = sigma_4(n^4)/sigma(n^4).

Original entry on oeis.org

1, 2255, 360205, 8965359, 195688121, 812262275, 11869610005, 36654862063, 190649623129, 441276712855, 2853329308061, 3229367138595, 21506735660905, 26765970561275, 70487839624805, 150121132912367, 548357292625505, 429914900155895, 2096841596815405, 1754414256800439
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2002

Keywords

Examples

			a(2) = sigma_4(2^4)/sigma(2^4) = 69905/31 = 2255.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(12*e+3) + p^(8*e+2) + p^(4*e+1) + 1)/(p^3 + p^2 + p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 20] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    a(n)=sumdiv(n^4,d,d^4)/sigma(n^4)
    
  • PARI
    a(n) = my(f=factor(n^4)); sigma(f, 4)/sigma(f); \\ Michel Marcus, Sep 09 2020

Formula

a(n) = A001158(n^4)/A000203(n^4).
Multiplicative with a(p^e) = (p^(12*e+3) + p^(8*e+2) + p^(4*e+1) + 1)/(p^3 + p^2 + p + 1). - Amiram Eldar, Sep 09 2020
Sum_{k=1..n} a(k) ~ c * n^13, where c = (zeta(3)*zeta(5)*zeta(9)*zeta(13)/13) * Product_{p prime} (1-1/p^2-1/p^3+1/p^5-1/p^7+1/p^8-1/p^12+2/p^13-2/p^14+2/p^15-1/p^16+2/p^17-3/p^18+1/p^19+1/p^21-1/p^22-1/p^26-1/p^27) = 0.048281563902... . - Amiram Eldar, Nov 20 2022

A161010 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 14.

Original entry on oeis.org

1, 8191, 797161, 33550336, 305175781, 6529545751, 16148168401, 137422176256, 423644039001, 2499694822171, 3452271214393, 26745019396096, 25239592216021, 132269647372591, 243274230757741, 562881233944576, 619036127056621
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^13 such that the quotient group Z^13 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 13 of A263950.

Programs

  • Maple
    f:= proc(n) local t; mul(t[1]^(12*t[2]-12)*(t[1]^13-1)/(t[1]-1), t = ifactors(n)[2]) end proc:
    seq(f(n),n=1..100); # Robert Israel, Dec 08 2015
  • Mathematica
    b = 14; Table[Sum[MoebiusMu[n/d] d^(b - 1), {d, Divisors@ n}]/EulerPhi@ n, {n, 17}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(12*e - 12) * (p^13-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^12, d, if(ispower(d, 13), moebius(sqrtnint(d, 13))*sigma(n^12/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^13 - 1)*f[i,1]^(12*f[i,2] - 12)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_13(n)/J_1(n) where J_13 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(12e-12) * (p^13-1) / (p-1).
For squarefree n, a(n) = A000203(n^12). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^13, where c = (1/13) * Product_{p prime} (1 + (p^12-1)/((p-1)*p^13)) = 0.14949521105... .
Sum_{k>=1} 1/a(k) = zeta(12)*zeta(13) * Product_{p prime} (1 - 2/p^13 + 1/p^25) = 1.0001233729754... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^13). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A161025 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 15.

Original entry on oeis.org

1, 16383, 2391484, 134209536, 1525878906, 39179682372, 113037178808, 1099444518912, 3812797945332, 24998474116998, 37974983358324, 320959957991424, 328114698808274, 1851888100411464, 3649114989636504
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^14 such that the quotient group Z^14 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 14 of A263950.

Programs

  • Maple
    A161025 := proc(n)
        add(numtheory[mobius](n/d)*d^14,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A161025(n)) ;
    end do: # R. J. Mathar, Mar 15 2016
  • Mathematica
    A161025[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(15-1)/EulerPhi[n]&]
    f[p_, e_] := p^(13*e - 13) * (p^14-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^13, d, if(ispower(d, 14), moebius(sqrtnint(d, 14))*sigma(n^13/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^14 - 1)*f[i,1]^(13*f[i,2] - 13)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_14(n)/J_1(n) where J_14 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(13e-13) * (p^14-1) / (p-1).
For squarefree n, a(n) = A000203(n^13). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^14, where c = (1/14) * Product_{p prime} (1 + (p^13-1)/((p-1)*p^14)) = 0.1388226555... .
Sum_{k>=1} 1/a(k) = zeta(13)*zeta(14) * Product_{p prime} (1 - 2/p^14 + 1/p^27) = 1.00006146517418... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^14). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010
Previous Showing 11-20 of 27 results. Next