cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A126812 Ramanujan numbers (A000594) read mod 4.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • D. B. Lahiri, On Ramanujan's function tau(n) and divisor function sigma_k(n), I, Bulletin of the Calcutta Mathematical Society, Vol. 38 (1946), pp. 193-206; II, ibid., Vol. 39 (1947), pp. 33-51.

Crossrefs

Programs

Formula

a(n) == n^2 * sigma_7(n) (mod 4) (Lahiri, 1946-1947). - Amiram Eldar, Jan 04 2025

A126834 Ramanujan numbers (A000594) read mod 125.

Original entry on oeis.org

1, 101, 2, 28, 80, 77, 6, 105, 107, 80, 112, 56, 12, 106, 35, 11, 66, 57, 45, 115, 12, 62, 22, 85, 25, 87, 45, 43, 5, 35, 82, 71, 99, 41, 105, 121, 61, 45, 24, 25, 67, 87, 42, 11, 60, 97, 121, 22, 43, 25, 7, 86, 52, 45, 85, 5, 90, 5, 10, 105, 37, 32, 17, 18, 85, 124, 116, 98, 44
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A126832 (mod 5^1), A126833 (mod 5^2), this sequence (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    Mod[RamanujanTau@ #, 125] & /@ Range@ 69 (* Michael De Vlieger, Apr 26 2016 *)
  • PARI
    a(n) = ramanujantau(n) % 125; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) = (5*n^2*sigma_7(n) - 4*n*sigma_2(n)) mod 125, for n coprime to 5. - Michel Marcus, Apr 26 2016

A068024 Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=7.

Original entry on oeis.org

1, 255, 3280, 43435, 97656, 998184, 960800, 6347715, 8069620, 27615060, 21435888, 184770040, 67977560, 263540112, 343123440, 866251507, 435984840, 2595218340, 943531280, 4944199260, 3308659904, 5722701624, 3559590240
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CIP7 = CycleIndexPolynomial[SymmetricGroup[7], Array[x, 7]]; a[n_] := CIP7 /. x[k_] -> DivisorSigma[k, n]; Array[a, 23] (* Jean-François Alcover, Nov 04 2016 *)

Formula

1/7!*(sigma[1](n)^7 + 21*sigma[1](n)^5*sigma[2](n) + 70*sigma[1](n)^4*sigma[3](n) + 105*sigma[1](n)^3*sigma[2](n)^2 + 210*sigma[1](n)^3*sigma[4](n) + 420*sigma[1](n)^2*sigma[2](n)*sigma[3](n) + 105*sigma[1](n)*sigma[2](n)^3 + 504*sigma[1](n)^2*sigma[5](n) + 630*sigma[1](n)*sigma[2](n)*sigma[4](n) + 280*sigma[1](n)*sigma[3](n)^2 + 210*sigma[2](n)^2*sigma[3](n) + 840*sigma[1](n)*sigma[6](n) + 504*sigma[2](n)*sigma[5](n) + 420*sigma[3](n)*sigma[4](n) + 720*sigma[7](n)).

A087115 Convolution of sum of cubes of divisors with itself.

Original entry on oeis.org

0, 1, 18, 137, 650, 2350, 6860, 17609, 39870, 83976, 162382, 301070, 522886, 885284, 1424468, 2254537, 3419448, 5143987, 7448874, 10750712, 15015872, 20948610, 28373444, 38539022, 50863150, 67454492, 87209316, 113326308, 143748766, 183759900, 229271536
Offset: 1

Views

Author

Michael Somos, Aug 13 2003

Keywords

Comments

Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = x^2 + 18*x^3 + 137*x^4 + 650*x^5 + 2350*x^6 + 6860*x^7 + 17609*x^8 + ...
		

References

  • Jean-Pierre Serre, A Course in Arithmetic, Springer-Verlag, 1973, Chapter VII, Section 4., p. 93.

Crossrefs

Cf. A004009.
Cf. A001158 (sigma_3), A013955 (sigma_7). [Ridouane Oudra, Apr 22 2020]

Programs

  • Maple
    with(numtheory); f:=n->add( sigma[3](k)*sigma[3](n-k),k=1..n-1);
  • Mathematica
    a[ n_] := If[ n < 1, 0, (DivisorSigma[ 7, n] - DivisorSigma[ 3, n]) / 120]; (* Michael Somos, Oct 08 2017 *)
  • PARI
    {a(n) = if( n<1, 0, (sigma(n, 7) - sigma(n, 3)) / 120)};
    
  • PARI
    {a(n) = if( n<1, 0, sum(m=1, n-1, sigma(m, 3) * sigma(n-m, 3)))};

Formula

G.f.: (Sum_{k>0} k^3 * x^k / (1 - x^k))^2.
a(n) = (sigma_7(n) - sigma_3(n)) / 120.
G.f.: ((Q(x) - 1) / 240)^2 where Q() is a Ramanujan Eisenstein series.
Dirichlet g.f.: zeta(s) * (zeta(s-7) - zeta(s-3)) / 120. - Amiram Eldar, Jan 11 2025
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / 9072000. - Vaclav Kotesovec, Aug 20 2025

A279917 a(n) = Sum_{k=1..n-1} sigma_5(k)*sigma_7(n-k).

Original entry on oeis.org

0, 1, 162, 6689, 121250, 1296406, 9613604, 54550049, 252178758, 992204376, 3424910566, 10615778966, 30047257318, 78751366604, 193075366412, 446840757793, 982597838280, 2066025009763, 4171924730922, 8127978871064, 15324653827568, 28059983210370
Offset: 1

Views

Author

Seiichi Manyama, Dec 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (DivisorSigma[13, n] + 20 * DivisorSigma[7, n] - 21 * DivisorSigma[5, n]) / 10080; Array[a, 25] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = {my(f = factor(n)); (sigma(f, 13) + 20 * sigma(f, 7) - 21 * sigma(f, 5)) / 10080;} \\ Amiram Eldar, Jan 07 2025

Formula

a(n) = (sigma_13(n)+20*sigma_7(n)-21*sigma_5(n))/10080.

A279964 a(n) = Sum_{k=1..n-1} sigma_3(k)*sigma_7(n-k).

Original entry on oeis.org

0, 1, 138, 3377, 39890, 297550, 1623980, 7065329, 25808790, 82305816, 234756742, 611706830, 1474831246, 3334313204, 7118797268, 14485772017, 28206850488, 52921773667, 95877425634, 168644231672, 288301373792, 481166453010, 784226941604, 1253068878542, 1962356045590
Offset: 1

Views

Author

Seiichi Manyama, Dec 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[3, k] * DivisorSigma[7, n - k], {k, 1, n - 1}], {n, 1, 25}] (* Indranil Ghosh, Mar 12 2017 *)
    a[n_] := (1800 * RamanujanTau[n] + 273 * DivisorSigma[11, n] - 1382 * DivisorSigma[7, n] - 691 * DivisorSigma[3, n]) / 331680; Array[a, 25] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = sum(k=1, n-1, sigma(k, 3)*sigma(n-k,7)); \\ Michel Marcus, Dec 24 2016
    
  • PARI
    a(n) = {my(f = factor(n)); (1800 * ramanujantau(n) + 273 * sigma(f, 11) - 1382 * sigma(f, 7) - 691 * sigma(f, 3)) / 331680;} \\ Amiram Eldar, Jan 07 2025

Formula

36*tau(n) = 5*sigma_3(n) + 10*sigma_7(n) + 21*sigma_5(n) + 2400*a(n) - 5292*A279889(n).

A289744 Coefficients in expansion of q*E'_8 where E_8 is the Eisenstein Series (A008410).

Original entry on oeis.org

480, 123840, 3150720, 31704960, 187502400, 812885760, 2767107840, 8116473600, 20671878240, 48375619200, 102892268160, 208111357440, 391550752320, 713913822720, 1230765753600, 2077817249280, 3348363579840, 5333344585920, 8152110268800, 12384908524800
Offset: 1

Views

Author

Seiichi Manyama, Jul 11 2017

Keywords

Crossrefs

(-1)^(k/2)*q*E'_{k}: A076835 (k=2), A145094 (k=4), A145095 (k=6), this sequence (k=8), A289745 (k=10), A289746 (k=14).

Programs

Formula

a(n) = 480*A282060(n) = 480*n*A013955(n).

A259673 a(n) = sigma_(prime(n))(n).

Original entry on oeis.org

1, 9, 244, 16513, 48828126, 13062296532, 232630513987208, 144115462954287105, 8862938119746644274757, 100000000186264514923632574038, 191943424957750480504146841291812, 8505622499882988712256991112913772434548, 4695452425098908797088971409337422035076128814
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 03 2015

Keywords

Crossrefs

Cf. A000203 (sigma(n)), A000040 (prime(n)), A023887 (sigma_n(n)).
Cf. A001157 (sigma_2), A001158 (sigma_3), A001160 (sigma_5), A013955 (sigma_7).

Programs

  • Magma
    [DivisorSigma(NthPrime(n),n):n in [1..15]]; // Vincenzo Librandi, Jul 15 2015
    
  • Maple
    a:= n-> numtheory[sigma][ithprime(n)](n):
    seq(a(n), n=1..15);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    a[n_] := DivisorSigma[Prime[n], n]; Array[a, 13]
    (* Second program: *)
    a[n_] := SeriesCoefficient[Sum[k^Prime[n]*x^k/(1-x^k), {k, 1, n}], {x, 0, n}]; Array[a, 13] (* Jean-François Alcover, Sep 29 2017, from 2nd formula *)
  • PARI
    a(n) = sigma(n, prime(n)); \\ Michel Marcus, Jul 03 2015
    
  • Python
    from sympy import divisor_sigma, prime
    def A259673(n):
        return divisor_sigma(n,prime(n)) # Chai Wah Wu, Jul 20 2015

Formula

a(n) = sigma_(A000040(n))(n).
a(n) = [x^n] Sum_{k>=1} k^prime(n)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 26 2017

Extensions

a(11) and a(12) from Anders Hellström, Jul 14 2015

A055701 Numbers k such that k | sigma_7(k) - phi(k)^7.

Original entry on oeis.org

1, 2, 10, 12, 26, 42, 172, 456, 588, 1326, 3315, 3635, 6468, 6720, 12102, 12922, 15288, 17836, 18810, 21756, 32984, 36108, 36603, 40572, 41748, 72905, 78120, 137004, 195216, 291060, 295176, 923212, 978014, 989604, 1009800, 1015768, 1069712, 1602692, 1711024
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_7(k) is the sum of the 7th powers of the divisors of k (A013955).

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[7, n]-EulerPhi[n]^7, n]==0, Print[n]], {n, 1, 10^5}]
    Select[Range[2*10^6],Divisible[DivisorSigma[7,#]-EulerPhi[#]^7,#]&] (* Harvey P. Dale, Dec 02 2016 *)
  • PARI
    isok(n) = !((sigma(n, 7) - eulerphi(n)^7) % n); \\ Michel Marcus, Mar 02 2014

Extensions

Definition corrected and more terms from Michel Marcus, Mar 02 2014

A081865 a(n) = sigma_7(2n-1).

Original entry on oeis.org

1, 2188, 78126, 823544, 4785157, 19487172, 62748518, 170939688, 410338674, 893871740, 1801914272, 3404825448, 6103593751, 10465138360, 17249876310, 27512614112, 42637932336, 64340198544, 94931877134, 137293757384, 194754273882, 271818611108, 373845175782
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Crossrefs

Cf. A013955.

Programs

  • Mathematica
    DivisorSigma[7, Range[1, 45, 2]] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    a(n) = sigma(2*n-1, 7); \\ Michel Marcus, Dec 04 2013

Formula

Sum_{k=1..n} a(k) ~ c * n^8, where c = 17 * Pi^8 / 10080 = 16.00248... . - Amiram Eldar, Jan 07 2025

Extensions

Three more terms from Michel Marcus, Dec 04 2013
Previous Showing 21-30 of 33 results. Next