cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A372025 Maximum second Zagreb index of maximal 3-degenerate graphs with n vertices.

Original entry on oeis.org

12, 54, 120, 210, 324, 462, 624, 810, 1020, 1254, 1512, 1794, 2100, 2430, 2784, 3162, 3564, 3990, 4440, 4914, 5412, 5934, 6480, 7050, 7644, 8262, 8904, 9570, 10260, 10974, 11712, 12474, 13260, 14070, 14904, 15762, 16644, 17550, 18480, 19434, 20412, 21414, 22440, 23490, 24564, 25662, 26784, 27930
Offset: 3

Views

Author

Allan Bickle, Apr 16 2024

Keywords

Comments

The second Zagreb index of a graph is the sum of the products of the degrees over all edges of the graph.
A maximal 3-degenerate graph can be constructed from a 3-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to three existing vertices. The extremal graphs are 3-stars, so the bound also applies to 3-trees.

Examples

			The graph K_3 has 3 degree 2 vertices, so a(3) = 3*4 = 12.
		

Crossrefs

Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).
Cf. A051624, A372025, A372026 (second Zagreb indices of maximal k-degenerate graphs).
Cf. A372027 (second Zagreb index of MOPs).

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {12, 54, 120}, 50] (* Paolo Xausa, Jan 22 2025 *)

Formula

a(n) = 3*(n-1)^2 + 9*(n-3)*(n-1).
From Chai Wah Wu, Apr 16 2024: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5.
G.f.: x^3*(6*x^2 - 18*x - 12)/(x - 1)^3. (End)
a(n) = 6*A014107(n-1). Sum_{n>=3} 1/a(n) = (1/2+log(2))/9 = 0.1325719... - R. J. Mathar, Apr 22 2024

A131804 Antidiagonal sums of triangular array T: T(j,k) = -(k+1)/2 for odd k, T(j,k) = 0 for k = 0, T(j,k) = j+1-k/2 for even k > 0; 0 <= k <= j.

Original entry on oeis.org

0, 0, -1, -1, 1, 2, 1, 2, 6, 8, 7, 9, 15, 18, 17, 20, 28, 32, 31, 35, 45, 50, 49, 54, 66, 72, 71, 77, 91, 98, 97, 104, 120, 128, 127, 135, 153, 162, 161, 170, 190, 200, 199, 209, 231, 242, 241, 252, 276, 288, 287, 299, 325, 338, 337, 350, 378, 392, 391, 405, 435, 450
Offset: 0

Views

Author

Klaus Brockhaus, Jul 18 2007

Keywords

Comments

T is obtained by replacing the values of the second, fourth, sixth, ... column of the triangular array defined in A129819 by the corresponding negative values.
Interleaving of A000384, A001105, A056220 and A014107 (starting at the second term).
Main diagonal of T is in A001057, row sums are in A131805.

Examples

			First seven rows of T are
[ 0 ],
[ 0, -1 ],
[ 0, -1, 2 ],
[ 0, -1, 3, -2 ],
[ 0, -1, 4, -2, 3 ],
[ 0, -1, 5, -2, 4, -3 ],
[ 0, -1, 6, -2, 5, -3, 4 ]
		

Crossrefs

Cf. A129819, A000384 (n*(2*n-1)), A001105 (2*n^2), A056220 (2*n^2-1), A014107 (n*(2*n-3)), A001057, A131805.

Programs

  • Magma
    m:=62; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do for k:=2 to j do if k mod 2 eq 0 then M[j, k]:=-k div 2; else M[j, k]:=j-(k div 2); end if; end for; end for; [ &+[ M[j-k+1, k]: k in [1..(j+1) div 2] ]: j in [1..m] ];
    
  • PARI
    {for(n=0, 61, r=n%4; k=(n-r)/4; a=if(r==0, k*(2*k-1), if(r==1, 2*k^2, if(r==2, 2*k^2-1, k*(2*k+1)-1))); print1(a, ","))}

Formula

a(0) = 0, a(1) = 0, a(2) = -1, a(3) = -1, a(4) = 1, a(5) = 2, a(6) = 1; for n > 6, a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7);
G.f.: x^2*(-1+2*x-x^2+x^3)/((1-x)^3*(1+x^2)^2).

A200050 a(2) = 1, then (p-1)*(p-4)/2, with p = prime(n), n > 2.

Original entry on oeis.org

1, 2, 9, 35, 54, 104, 135, 209, 350, 405, 594, 740, 819, 989, 1274, 1595, 1710, 2079, 2345, 2484, 2925, 3239, 3740, 4464, 4850, 5049, 5459, 5670, 6104, 7749, 8255, 9044, 9315, 10730, 11025, 11934, 12879, 13529, 14534, 15575, 15930, 17765, 18144, 18914, 19305
Offset: 2

Views

Author

Arkadiusz Wesolowski, Apr 16 2012

Keywords

Comments

Record values in A192599. The index sequence of this one is 1, 2, 3, 6, 7, 9, 11, 13, 17, 18, 21, 23, 25, 29, 31, 34, 36, 40, 42, 45, 47, 50, 52, 56, 58, 61.

Examples

			A192599(13) = 209 since A192599(17) = 350 is the next record value.
		

Crossrefs

Programs

  • Magma
    [(p-1)*Abs(p-4)/2: p in [NthPrime(n+1): n in [1..45]]]
    
  • Mathematica
    Table[p = Prime[n + 1]; (p - 1)*Abs[p - 4]/2, {n, 45}]
    Join[{1},((#-1)(#-4))/2&/@Prime[Range[3,50]]] (* Harvey P. Dale, Aug 04 2020 *)
  • PARI
    vector(45, n, p=prime(n+1); (p-1)*abs(p-4)/2)

Formula

a(2) = 1, a(n) = A006093(n)*A172367(n-2)/2.

A326728 A(n, k) = n*(k - 1)*k/2 - k, square array for n >= 0 and k >= 0 read by ascending antidiagonals.

Original entry on oeis.org

0, 0, -1, 0, -1, -2, 0, -1, -1, -3, 0, -1, 0, 0, -4, 0, -1, 1, 3, 2, -5, 0, -1, 2, 6, 8, 5, -6, 0, -1, 3, 9, 14, 15, 9, -7, 0, -1, 4, 12, 20, 25, 24, 14, -8, 0, -1, 5, 15, 26, 35, 39, 35, 20, -9, 0, -1, 6, 18, 32, 45, 54, 56, 48, 27, -10
Offset: 0

Views

Author

Peter Luschny, Aug 04 2019

Keywords

Comments

A formal extension of the figurative numbers A139600 to negative n.

Examples

			[0] 0, -1, -2, -3, -4, -5, -6,  -7,  -8,  -9, -10, ... A001489
[1] 0, -1, -1,  0,  2,  5,  9,  14,  20,  27,  35, ... A080956
[2] 0, -1,  0,  3,  8, 15, 24,  35,  48,  63,  80, ... A067998
[3] 0, -1,  1,  6, 14, 25, 39,  56,  76,  99, 125, ... A095794
[4] 0, -1,  2,  9, 20, 35, 54,  77, 104, 135, 170, ... A014107
[5] 0, -1,  3, 12, 26, 45, 69,  98, 132, 171, 215, ... A326725
[6] 0, -1,  4, 15, 32, 55, 84, 119, 160, 207, 260, ... A270710
[7] 0, -1,  5, 18, 38, 65, 99, 140, 188, 243, 305, ...
		

Crossrefs

Cf. A001489 (n=0), A080956 (n=1), A067998 (n=2), A095794 (n=3), A014107 (n=4), A326725 (n=5), A270710 (n=6).
Columns include A008585, A016933, A017329.
Cf. A139600.

Programs

  • Maple
    A := (n, k) -> n*(k - 1)*k/2 - k:
    seq(seq(A(n - k, k), k=0..n), n=0..11);
  • Python
    def A326728Row(n):
        x, y = 1, 1
        yield 0
        while True:
            yield -x
            x, y = x + y - n, y - n
    for n in range(8):
        R = A326728Row(n)
    print([next(R) for _ in range(11)])

A386479 a(0) = 0; thereafter a(n) = 2*n^2 - 3*n + 5.

Original entry on oeis.org

0, 4, 7, 14, 25, 40, 59, 82, 109, 140, 175, 214, 257, 304, 355, 410, 469, 532, 599, 670, 745, 824, 907, 994, 1085, 1180, 1279, 1382, 1489, 1600, 1715, 1834, 1957, 2084, 2215, 2350, 2489, 2632, 2779, 2930, 3085, 3244, 3407, 3574, 3745, 3920, 4099, 4282, 4469, 4660, 4855, 5054, 5257, 5464, 5675, 5890, 6109, 6332, 6559, 6790
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2025

Keywords

Comments

For n>0, a(n) is the maximum number of regions the plane can be divided into by drawing two n-chains (both finite and infinite regions are counted). See A386478 for further information.
We do not at present have an explicit construction that will achieve a(n) for n > 5.

Crossrefs

A column of the array in A386478.
Essentially the same (up to offset, initial terms, and the addition of a small constant) as several other sequences, including A014105, A014107, A084849, A096376, A236257, ....

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{5,4,7},60] (* or *) a[n_]:=2n^2-3n+5;Array[a,60,0] (* James C. McMahon, Jul 26 2025 *)

Formula

From Stefano Spezia, Jul 26 2025: (Start)
G.f.: -x*(4-5*x+5*x^2) / (x-1)^3.
E.g.f.: exp(x)*(5 - x + 2*x^2) - 5. (End)

Extensions

Changed a(0) so as to match changes to A386478. - N. J. A. Sloane, Jul 26 2025

A002698 Coefficients of Chebyshev polynomials: n*(2*n-3)*2^(2*n-5).

Original entry on oeis.org

1, 18, 160, 1120, 6912, 39424, 212992, 1105920, 5570560, 27394048, 132120576, 627048448, 2936012800, 13589544960, 62277025792, 282930970624, 1275605286912, 5712306503680, 25426206392320, 112562502893568, 495879744126976, 2174833999740928, 9499780463984640
Offset: 2

Views

Author

Keywords

References

  • Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 516.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A002698:=(-1-6*z+8*z**2)/(4*z-1)**3; # [Simon Plouffe in his 1992 dissertation]
  • Mathematica
    Table[n*(2n-3)*2^(2n-5), {n, 2, 30}] (* Amiram Eldar, Feb 17 2023 *)

Formula

From Amiram Eldar, Feb 17 2023: (Start)
a(n) = A014107(n)*A000079(2*n-5).
Sum_{n>=2} 1/a(n) = 12*log(3) - 64*log(2)/3 + 8/3.
Sum_{n>=2} (-1)^n/a(n) = (8/3)*(arctan(1/2) + 4*log(5/4) - 1). (End)

A091435 Array T(n,k) = n*(n+k), read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 4, 2, 0, 9, 6, 3, 0, 16, 12, 8, 4, 0, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 49, 42, 35, 28, 21, 14, 7, 0, 64, 56, 48, 40, 32, 24, 16, 8, 0, 81, 72, 63, 54, 45, 36, 27, 18, 9, 0, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, 121, 110, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0
Offset: 0

Views

Author

Ross La Haye, Mar 02 2004

Keywords

Examples

			Table begins
   0;
   1,  0;
   4,  2,  0;
   9,  6,  3,  0;
  16, 12,  8,  4,  0;
  25, 20, 15, 10,  5,  0;
  36, 30, 24, 18, 12,  6,  0;
  ...
a(5,3) = 40 because 5 * (5 + 3) = 5 * 8 = 40.
		

Crossrefs

Columns: a(n, 0) = A000290(n), a(n, 1) = A002378(n), a(n, 2) = A005563(n), a(n, 3) = A028552(n), a(n, 4) = A028347(n+2), a(n, 5) = A028557(n), a(n, 6) = A028560(n), a(n, 7) = A028563(n), a(n, 8) = A028566(n). Diagonals: a(n, n-4) = A054000(n-1), a(n, n-3) = A014107(n), a(n, n-2) = A046092(n-1), a(n, n-1) = A000384(n), a(n, n) = A001105(n), a(n, n+1) = A014105(n), a(n, n+2) = A046092(n), a(n, n+3) = A014106(n), a(n, n+4) = A054000(n+1), a(n, n+5) = A033537(n). Also note that the sums of the antidiagonals = A002411.

Programs

  • GAP
    Flat(List([0..11],j->List([0..j],i->j*(j-i)))); # Muniru A Asiru, Sep 11 2018
  • Maple
    seq(seq((j-i)*j,i=0..j),j=0..14);
  • Mathematica
    Table[# (# + k) &[m - k], {m, 0, 11}, {k, 0, m}] // Flatten (* Michael De Vlieger, Oct 15 2018 *)

Formula

G.f.: x*(1+x-2*x^2*y)/((1-x*y)^2*(1-x)^3). - Vladeta Jovovic, Mar 05 2004

Extensions

More terms from Emeric Deutsch, Mar 15 2004

A109094 Length of the longest path (repeated edges not allowed) between two arbitrary, distinct nodes in K_n, the complete graph on n vertices.

Original entry on oeis.org

0, 1, 2, 5, 9, 13, 20, 25, 35, 41, 54, 61, 77, 85, 104, 113, 135, 145, 170, 181, 209, 221, 252, 265, 299, 313, 350, 365, 405, 421, 464, 481, 527, 545, 594, 613, 665, 685, 740, 761, 819, 841, 902, 925, 989, 1013, 1080, 1105, 1175, 1201, 1274, 1301, 1377, 1405
Offset: 1

Views

Author

Ryan Propper, Jun 18 2005

Keywords

Examples

			a(4) = 5 because the length of the longest path between any two distinct vertices in K_4 is 5.
		

Crossrefs

Formula

a(1)=0; a(2n+1) = n*(n-1)/2-1 = A014107(n+1), n>0; a(2n)=n*(n-2)/2+1= A001844(n-1). - Martin Fuller, R. J. Mathar and Mitch Harris, Dec 06 2007
O.g.f.: x^2*(x^4-2*x^3-x^2-x-1)/((-1+x)^3 *(x+1)^2) . - R. J. Mathar, Jan 17 2008

A177732 The sums of two or more consecutive positive numbers, the largest being even.

Original entry on oeis.org

3, 7, 9, 10, 11, 15, 18, 19, 20, 21, 23, 26, 27, 30, 31, 33, 34, 35, 36, 39, 40, 42, 43, 45, 47, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 63, 66, 67, 68, 69, 70, 71, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 87, 90, 91, 93, 95, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form (j+2l)*(2l-j+1)/2 with j>=1 and 2l>j. Subsequences are A014105 where >=3, (j=1), A014107 where >=9 (j=2). - R. J. Mathar, Jul 14 2012

Examples

			3=1+2, 7=3+4, 9=2+3+4, 10=1+2+3+4, 11=5+6,..
		

Crossrefs

Programs

  • Mathematica
    z=200;lst2={};Do[c=a;Do[c+=b;If[c<=2*z,AppendTo[lst2,c]],{b,a-1,1,-1}],{a,2,z,2}];Union@lst2
    With[{upto=108},Select[Union[Flatten[Table[Accumulate[Range[2n-1,1,-1]]+ 2n,{n,upto/4}]]],#<=upto&]] (* Harvey P. Dale, May 19 2019 *)

A187287 Number of 2-step one or two space at a time rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 8, 36, 80, 140, 216, 308, 416, 540, 680, 836, 1008, 1196, 1400, 1620, 1856, 2108, 2376, 2660, 2960, 3276, 3608, 3956, 4320, 4700, 5096, 5508, 5936, 6380, 6840, 7316, 7808, 8316, 8840, 9380, 9936, 10508, 11096, 11700, 12320, 12956, 13608, 14276, 14960, 15660
Offset: 1

Views

Author

R. H. Hardin, Mar 08 2011

Keywords

Examples

			Some solutions for 4 X 4:
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..2..0..1
..1..0..0..0....0..1..0..0....0..1..2..0....2..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..2..0..0..0....0..2..0..0....0..0..0..0....1..0..0..0....0..0..0..0
		

Crossrefs

Row 2 of A187286.
Cf. A014107.

Programs

Formula

Empirical: a(n) = 8*n^2 - 12*n for n>1.
Empirical g.f.: 4*x^2*(2+3*x-x^2)/(1-x)^3. - Colin Barker, Jan 22 2012
Previous Showing 21-30 of 38 results. Next