cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 71 results. Next

A098318 Decimal expansion of [5, 5, ...] = (5 + sqrt(29))/2.

Original entry on oeis.org

5, 1, 9, 2, 5, 8, 2, 4, 0, 3, 5, 6, 7, 2, 5, 2, 0, 1, 5, 6, 2, 5, 3, 5, 5, 2, 4, 5, 7, 7, 0, 1, 6, 4, 7, 7, 8, 1, 4, 7, 5, 6, 0, 0, 8, 0, 8, 2, 2, 3, 9, 4, 4, 1, 8, 8, 4, 0, 1, 9, 4, 3, 3, 5, 0, 0, 8, 3, 2, 2, 9, 8, 1, 4, 1, 3, 8, 2, 9, 3, 4, 6, 4, 3, 8, 3, 1, 6, 8, 9, 0, 8, 3, 9, 9, 1, 7, 7, 4, 2, 2, 0
Offset: 1

Views

Author

Eric W. Weisstein, Sep 02 2004

Keywords

Comments

The "metallic" constants A001622, A014176 etc. are defined inserting a = 1, 2, 3, 4, ... into (a+sqrt(a^2+4))/2. [Stakhov & Aranson] - R. J. Mathar, Feb 14 2011
This is the length/width ratio of a 5-extension rectangle; see A188640 where the metallic constants are defined for rational numbers. - Clark Kimberling, Apr 09 2011

Examples

			5.19258240356725201562535524577016477814756...
		

Crossrefs

Cf. A001622, A014176, A098316, A098317, A010716 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (5 + Sqrt(29))/2; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    r=5; t=(r+(4+r^2)^(1/2))/2; FullSimplify[t]
    N[t,130]
    RealDigits[N[t,130]][[1]]
    ContinuedFraction[t,120] (* Clark Kimberling, Apr 09 2011 *)
  • PARI
    (5 + sqrt(29))/2 \\ Charles R Greathouse IV, Jul 24 2013
    
  • Sage
    numerical_approx((5+sqrt(29))/2, digits=100) # G. C. Greubel, Jun 30 2019

Formula

5 plus the constant in A085551. - R. J. Mathar, Sep 02 2008
c^n = A052918(n-2) + A052918(n-1) * c, where c = (5 + sqrt(29))/2. - Gary W. Adamson, Oct 09 2023
Equals lim_{n->infinity} S(n, sqrt(29))/ S(n-1, sqrt(29)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023

A276862 First differences of the Beatty sequence A003151 for 1 + sqrt(2).

Original entry on oeis.org

2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Sep 24 2016

Keywords

Comments

Conjectures: Equals both A245219 and A097509. - Michel Dekking, Feb 18 2020
Theorem: If the initial term of A097509 is omitted, it is identical to the present sequence. For proof, see A097509. The argument may also imply that A082844 is also the same as these two sequences, apart from the initial terms. - Manjul Bhargava, Kiran Kedlaya, and Lenny Ng, Mar 02 2021. Postscript from the same authors, Sep 09 2021: We have proved that the present sequence, A276862 (indexed from 1) matches the characterization of {c_{i-1}} given by (8) of our "Solutions" page.

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021

Programs

  • Magma
    [Floor((n+1)*(1 + Sqrt(2))) - Floor(n*(1+Sqrt(2))): n in [1..100]]; // G. C. Greubel, Aug 16 2018
    
  • Mathematica
    z = 500; r = 1+Sqrt[2]; b = Table[Floor[k*r], {k, 0, z}]; (* A003151 *)
    Differences[b] (* A276862 *)
    Last@SubstitutionSystem[{2 -> {2, 3}, 3 -> {2, 3, 2}}, {2}, 5] (* John Keith, Apr 21 2021 *)
  • PARI
    vector(100, n, floor((n+1)*(1 + sqrt(2))) - floor(n*(1+sqrt(2)))) \\ G. C. Greubel, Aug 16 2018
    
  • Python
    from math import isqrt
    def A276862(n): return 1-isqrt(m:=n*n<<1)+isqrt(m+(n<<2)+2) # Chai Wah Wu, Aug 03 2022

Formula

a(n) = floor((n+1)*r) - floor(n*r) = A003151(n+1)-A003151(n), where r = 1 + sqrt(2), n >= 1.
a(n) = 1 + A006337(n) for n >+ 1. - R. J. Mathar, Sep 30 2016
Fixed point of the morphism 2 -> 2,3; 3 -> 2,3,2. - John Keith, Apr 21 2021

Extensions

Corrected by Michel Dekking, Feb 18 2020

A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

Examples

			First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
    1
    2,   0
    4,   1,  0
    8,   4,  0, 0
   16,  12,  1, 0, 0
   32,  32,  6, 0, 0, 0
   64,  80, 24, 1, 0, 0, 0
  128, 192, 80, 8, 0, 0, 0, 0
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207537, |A028297| *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207538, |A133156| *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
    t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
From Philippe Deléham, Mar 04 2012: (Start)
With 0<=k<=n:
Mirror image of triangle in A099089.
Skew version of A038207.
Riordan array (1/(1-2*x), x^2/(1-2*x)).
G.f.: 1/(1-2*x-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013
From Tom Copeland, Feb 11 2016: (Start)
A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
(End)

A384277 Decimal expansion of the smallest zero of the Laguerre polynomial of degree 3.

Original entry on oeis.org

4, 1, 5, 7, 7, 4, 5, 5, 6, 7, 8, 3, 4, 7, 9, 0, 8, 3, 3, 1, 1, 5, 3, 3, 8, 7, 3, 1, 2, 8, 2, 7, 4, 4, 7, 3, 5, 4, 6, 6, 1, 7, 4, 1, 2, 6, 9, 3, 1, 1, 8, 4, 6, 5, 0, 9, 3, 9, 6, 5, 9, 5, 4, 3, 2, 2, 3, 2, 5, 0, 1, 9, 9, 3, 6, 9, 1, 3, 3, 1, 4, 9, 5, 7, 1, 9, 6
Offset: 0

Views

Author

A.H.M. Smeets, May 24 2025

Keywords

Examples

			0.41577455678347908331153387312827447354661741269311...
		

Crossrefs

There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
3 | this sequence, A384278, A384279 | A384463, A384464, A384465

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[3, #] &, 1], 10, 100]] (* Paolo Xausa, Jun 05 2025 *)

Formula

Smallest root of x^3 - 9 x^2 + 18 x - 6 = 0.

A384279 Decimal expansion of the largest zero of the Laguerre polynomial of degree 3.

Original entry on oeis.org

6, 2, 8, 9, 9, 4, 5, 0, 8, 2, 9, 3, 7, 4, 7, 9, 1, 9, 6, 8, 6, 6, 4, 1, 5, 7, 6, 5, 5, 1, 2, 1, 3, 1, 6, 5, 7, 4, 9, 3, 5, 2, 0, 8, 6, 6, 2, 4, 6, 6, 0, 0, 7, 0, 0, 8, 7, 0, 8, 3, 2, 7, 9, 7, 5, 9, 3, 6, 4, 4, 5, 2, 8, 7, 2, 5, 9, 2, 0, 2, 3, 8, 4, 7, 9, 6, 1
Offset: 1

Views

Author

A.H.M. Smeets, May 26 2025

Keywords

Examples

			6.28994508293747919686641576551213165749352086624660...
		

Crossrefs

Cf. A384590.
There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
3 | A384277, A384278, this sequence | A384463, A384464, A384465

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[3, #] &, 3], 10, 100]] (* Paolo Xausa, Jun 05 2025 *)

Formula

largest root of x^3 - 9 x^2 + 18 x - 6 = 0.

A384278 Decimal expansion of the second smallest zero of the Laguerre polynomial of degree 3.

Original entry on oeis.org

2, 2, 9, 4, 2, 8, 0, 3, 6, 0, 2, 7, 9, 0, 4, 1, 7, 1, 9, 8, 2, 2, 0, 5, 0, 3, 6, 1, 3, 5, 9, 5, 9, 3, 8, 6, 8, 9, 5, 9, 8, 6, 1, 7, 2, 1, 0, 6, 0, 2, 8, 0, 8, 3, 4, 0, 3, 5, 2, 0, 1, 2, 4, 8, 0, 8, 4, 0, 3, 0, 4, 5, 1, 3, 3, 7, 1, 6, 6, 4, 4, 6, 5, 6, 3, 1, 8
Offset: 1

Views

Author

A.H.M. Smeets, May 24 2025

Keywords

Examples

			2.29428036027904171982205036135959386895986172106028...
		

Crossrefs

There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
3 | A384277, this sequence, A384279 | A384463, A384464, A384465

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[3, #] &, 2], 10, 100]] (* Paolo Xausa, Jun 05 2025 *)

Formula

Second smallest root of x^3 - 9 x^2 + 18 x - 6 = 0.

A384280 Decimal expansion of the smallest zero of the Laguerre polynomial of degree 4.

Original entry on oeis.org

3, 2, 2, 5, 4, 7, 6, 8, 9, 6, 1, 9, 3, 9, 2, 3, 1, 1, 8, 0, 0, 3, 6, 1, 4, 5, 9, 1, 0, 4, 3, 6, 7, 4, 7, 9, 7, 4, 3, 7, 5, 7, 2, 2, 4, 4, 7, 4, 2, 9, 5, 7, 6, 7, 1, 8, 8, 4, 5, 1, 8, 5, 3, 8, 0, 6, 9, 6, 8, 6, 7, 8, 7, 0, 7, 7, 0, 4, 0, 0, 9, 8, 6, 8, 5, 8, 5
Offset: 0

Views

Author

A.H.M. Smeets, May 26 2025

Keywords

Examples

			0.32254768961939231180036145910436747974375722447429...
		

Crossrefs

There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
4 | this sequence, A384281

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[4, #] &, 1], 10, 100]] (* Paolo Xausa, Jun 05 2025 *)

Formula

Smallest root of x^4 - 16 x^3 + 72 x^2 - 96 x + 24 = 0.

A384281 Decimal expansion of the second smallest zero of the Laguerre polynomial of degree 4.

Original entry on oeis.org

1, 7, 4, 5, 7, 6, 1, 1, 0, 1, 1, 5, 8, 3, 4, 6, 5, 7, 5, 6, 8, 6, 8, 1, 6, 7, 1, 2, 5, 1, 7, 9, 4, 7, 0, 2, 3, 6, 7, 3, 8, 7, 4, 5, 1, 5, 5, 3, 1, 0, 7, 2, 5, 0, 1, 7, 8, 2, 7, 8, 2, 6, 6, 0, 9, 9, 8, 4, 5, 6, 0, 5, 7, 4, 4, 2, 1, 9, 7, 1, 6, 4, 1, 4, 0, 1, 3
Offset: 1

Views

Author

A.H.M. Smeets, May 26 2025

Keywords

Examples

			1.74576110115834657568681671251794702367387451553107...
		

Crossrefs

There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
4 | A384280, this sequence

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[4, #] &, 2], 10, 100]] (* Paolo Xausa, Jun 05 2025 *)

Formula

Second smallest root of x^4 - 16 x^3 + 72 x^2 - 96 x + 24 = 0.

A006275 Pierce expansion of sqrt(2) - 1.

Original entry on oeis.org

2, 5, 7, 197, 199, 7761797, 7761799, 467613464999866416197, 467613464999866416199, 102249460387306384473056172738577521087843948916391508591105797
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Nov 22 2012: (Start)
For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x. The present sequence is the case x = sqrt(2) - 1.
The Pierce expansion of (sqrt(2) - 1)^(3^n) is [a(0)*a(2)*...*a(2*n), a(2*n+1), a(2*n+2), ...] = [sqrt(a(2*n+1) - 1), a(2*n+1), a(2*n+2), ...]. The Pierce expansion of (sqrt(2) - 1)^(2*3^n) is [a(2*n+1), a(2*n+2), ...]. Some examples of the associated alternating series are given below.
(End)

Examples

			Let c(0)=6, c(n+1) = c(n)^3-3*c(n); then this sequence is 2, c(0)-1, c(0)+1, c(1)-1, c(1)+1, c(2)-1, c(2)+1, ...
From _Peter Bala_, Nov 22 2012: (Start)
Let x = sqrt(2) - 1. We have the alternating series expansions
x = 1/2 - 1/(2*5) + 1/(2*5*7) - 1/(2*5*7*197) + ...
x^3 = 1/14 - 1/(14*197) + 1/(14*197*199) - ...
x^9 = 1/2786 - 1/(2786*7761797) + 1/(2786*7761797*7761799) - ...,
where 2786 = 2*7*199, and also
x^2 = 1/5 - 1/(5*7) + 1/(5*7*197) - 1/(5*7*197*199) + ...
x^6 = 1/197 - 1/(197*199) + 1/(197*199*7761797) - ...
x^18 = 1/7761797 - 1/(7761797*7761799) + ....
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Sqrt[2] - 1, 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    my(r=1+quadgen(8)); for(n=1, 10, print1(floor(r), ", "); r=r/(r-floor(r)));

Formula

Let u(0)=1+sqrt(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)). - Benoit Cloitre, Mar 09 2004
From Peter Bala, Nov 22 2012: (Start)
a(2*n+2) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n) + 1.
a(2*n+1) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n) - 1. (End)
sqrt(2) - 1 = a(0)/a(1) + (a(0)*a(2))/(a(1)*a(3)) + (a(0)*a(2)*a(4))/(a(1)*a(3)*a(5)) + ... = 2/5 + (2*7)/(5*197) + (2*7*199)/(5*197*7761797) + ... . - Peter Bala, Dec 03 2012

Extensions

More terms from James Sellers, May 19 2000

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022
Previous Showing 11-20 of 71 results. Next