cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 67 results. Next

A351894 Numbers that contain only odd digits in their factorial-base representation.

Original entry on oeis.org

1, 3, 9, 21, 33, 45, 81, 93, 153, 165, 201, 213, 393, 405, 441, 453, 633, 645, 681, 693, 873, 885, 921, 933, 1113, 1125, 1161, 1173, 1353, 1365, 1401, 1413, 2313, 2325, 2361, 2373, 2553, 2565, 2601, 2613, 2793, 2805, 2841, 2853, 3753, 3765, 3801, 3813, 3993, 4005
Offset: 1

Views

Author

Amiram Eldar, Feb 24 2022

Keywords

Comments

All the terms above 1 are odd multiples of 3.

Examples

			3 is a term since its factorial-base presentation, 11, has only odd digits.
21 is a term since its factorial-base presentation, 311, has only odd digits.
		

Crossrefs

Subsequence: A007489
Similar sequences: A003462 \ {0} (ternary), A014261 (decimal), A032911 (base 4), A032912 (base 5), A033032 (base 6), A033033 (base 7), A033034 (base 8), A033035 (base 9), A033036 (base 11), A033037 (base 12), A033038 (base 13), A033039 (base 14), A033040 (base 15), A033041 (base 16), A126646 (binary).

Programs

  • Mathematica
    max = 7; fctBaseDigits[n_] := IntegerDigits[n, MixedRadix[Range[max, 2, -1]]]; Select[Range[1, max!, 2], AllTrue[fctBaseDigits[#], OddQ] &]

A007928 Numbers containing an even digit.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 94, 96, 98, 100
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Or, numbers whose product of digits is even.
Complement of A014261; A196563(a(n)) > 0. - Reinhard Zumkeller, Oct 04 2011

Programs

  • Haskell
    import Data.List (findIndices)
    a007928 n = a007928_list !! (n-1)
    a007928_list = findIndices (> 0) a196563_list
    -- Reinhard Zumkeller, Oct 04 2011
    
  • Magma
    [ n : n in [0..129] | IsEven(&*Intseq(n,10)) ];
    
  • PARI
    is(n)=vecmin(Set(digits(n)%2))==0 \\ Charles R Greathouse IV, Feb 14 2017

Formula

a(n) ~ n. - Charles R Greathouse IV, Sep 07 2012

A033033 Numbers all of whose base 7 digits are odd.

Original entry on oeis.org

1, 3, 5, 8, 10, 12, 22, 24, 26, 36, 38, 40, 57, 59, 61, 71, 73, 75, 85, 87, 89, 155, 157, 159, 169, 171, 173, 183, 185, 187, 253, 255, 257, 267, 269, 271, 281, 283, 285, 400, 402, 404, 414, 416, 418, 428, 430, 432, 498, 500, 502, 512
Offset: 1

Views

Author

Keywords

Examples

			38 in base 7 is 53_7. All the digits of 38 in base 7; 5 and 3; are odd. So 38 is in the sequence. - _David A. Corneth_, Aug 24 2019
		

Crossrefs

Programs

  • Magma
    [m:m in [1..600]| Intseq(m,7) subset {1,3,5}]; // Marius A. Burtea, Aug 24 2019
  • Mathematica
    Select[Range[600],AllTrue[IntegerDigits[#,7],OddQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 28 2014 *)
  • PARI
    is(n) = {my(d = Set(digits(n, 7))); for(i = 1, #d, if(d[i]%2 == 0, return(0))); 1} \\ David A. Corneth, Aug 24 2019
    

A061808 a(n) is the smallest number with all digits odd that is divisible by 2n-1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 315, 115, 75, 135, 319, 31, 33, 35, 37, 39, 533, 559, 135, 517, 539, 51, 53, 55, 57, 59, 793, 315, 195, 335, 759, 71, 73, 75, 77, 79, 1377, 913, 595, 957, 979, 91, 93, 95, 97, 99, 1111, 515, 315, 535, 1199, 111, 113, 115, 117, 119, 1331, 1353, 375, 1397, 1935
Offset: 1

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Comments

From Yang Haoran, Dec 02 2017, edited by M. F. Hasler, Mar 05 2025: (Start)
Record value for a(n) = (2n-1) * A296009(n):
(1, 3, 5, ..., 19) * 1 = (1, 3, 5, ..., 19)
21 * 15 = 315
29 * 11 = 319
41 * 13 = 533
43 * 13 = 559
61 * 13 = 793
81 * 17 = 1377
127 * 11 = 1397
129 * 15 = 1935
149 * 13 = 1937
167 * 19 = 3173
169 * 33 = 5577
201 * 155 = 31155
299 * 105 = 31395
401 * 133 = 53333
601 * 119 = 71519
633 * 283 = 179139
(complete up to here)
...
990001 * 12121113 = 11999913991113 (the first A296009(n) > 2n-1).
(End)
All terms must be odd. - M. F. Hasler, Mar 05 2025

Crossrefs

Equals A296009 * (2n-1).

Programs

  • Magma
    a:=[]; for n in [1..120 by 2] do k:=1; while not Set(Intseq(n*k)) subset {1,3,5,7,9} do k:=k+2; end while; Append(~a,k*n); end for; a; // Marius A. Burtea, Sep 20 2019
    
  • Maple
    Ad[1]:= [1,3,5,7,9]:
    for n from 2 to 9 do Ad[n]:= map(t -> seq(10*t+j,j=[1,3,5,7,9]), Ad[n-1]) od:
    Aod:= [seq(op(Ad[i]),i=1..9)]:
    f:= proc(n) local k;
       for k from 1 to nops(Aod) do
           if Aod[k] mod (2*n-1) = 0 then return(Aod[k]) fi
         od;
         NotFound
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 15 2017
  • Mathematica
    Table[Block[{k = 2 n - 1}, While[Nand[AllTrue[IntegerDigits@ k, OddQ], Divisible[k, 2 n - 1]], k += 2]; k], {n, 59}] (* Michael De Vlieger, Dec 02 2017 *)
  • PARI
    isoddd(n) = #select(x->((x%2) == 0), digits(n)) == 0;
    a(n) = {my(m = 2*n-1, k = 1); while(!isoddd(k*m), k++); k*m;} \\ Michel Marcus, Sep 20 2019
    
  • PARI
    apply( {A061808(n)=forstep(k=n*2-1,oo,n*4-2,vecmin(digits(k)%2)&& return(k))}, [1..99])
    
  • Python
    A061808 = lambda n: next(m for m in range(2*n-1,9<<99,4*n-2) if all(int(d)&1 for d in str(m))) # M. F. Hasler, Mar 05 2025

Formula

From M. F. Hasler, Mar 05 2025: (Start)
a(n) = (2n-1)*A296009(n).
a(n) == 1 (mod 2) for all n. (End)

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 30 2001

A325114 Integers k such that no nonzero subsequence of the decimal representation of k is divisible by 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 80, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 113, 115, 116, 118, 120
Offset: 1

Views

Author

Jonathan Kal-El Peréz, Mar 27 2019

Keywords

Comments

Does not contain 114 (helps to distinguish this from related sequences).
From David A. Corneth, Sep 10 2024: (Start)
Any term greater than 10^6 must have a digit 0. Proof: Any term between 10^6 and 10^7 has a 0.
Proof via induction and contradiction; any 7 digital number term has a digit 0. Suppose some number with k with q > 7 digits has no digit 0. Then floor(k/10) is a term and has no digit 0 and q - 1 digits. But there is no such number. A contradiction. Therefore any term with at least 7 digits has a digit 0. (End)

Crossrefs

Cf. A014261 (for 2), A325112 (for 3), A325113 (for 4), A261189 (for 5).
See A376046 for complement.

Programs

  • Mathematica
    With[{k = 7}, Select[Range@ 100, NoneTrue[DeleteCases[FromDigits /@ Rest@ Subsequences[IntegerDigits@ #], 0], Mod[#, k] == 0 &] &]] (* Michael De Vlieger, Mar 31 2019 *)
  • PARI
    \\ See Corneth link

Extensions

More than the usual number of terms are shown in order to distinguish this from a new sequence arising from the game of "buzz" (cf. A092433). - N. J. A. Sloane, Sep 09 2024

A349247 Least n-digit number k with only odd digits such that the k-th triangular number also has only odd digits.

Original entry on oeis.org

1, 13, 177, 1777, 15173, 135173, 3397973, 13535137, 135157537, 1193111377, 11979759377, 119595919137, 1195991117973, 11979931335173, 119777591993777, 1199999593111377, 11977793913551137, 119593573333335733, 1195935733333335733, 11977593393931151137, 119759371717733717537
Offset: 1

Views

Author

M. F. Hasler, Nov 23 2021

Keywords

Comments

It appears that all a(n), n > 9, have initial digits "119".
It also appears that the sequence of digits of the terms converges to a limit, (1, 1, 9, 3, 1, ...). Can this be proved or disproved?

Crossrefs

Cf. A000217 (triangular numbers), A014261 (numbers with only odd digits), A117960 (triangular numbers with only odd digits), A349243 (indices of the former), A347475 (such indices with only odd digits), A355277 (largest such k-digit term).

Programs

  • PARI
    apply( A349247(n)=A347475_next(10^n\9), [1..15]) \\ Edited (moved function body to A347475) by M. F. Hasler, Sep 13 2022
    
  • Python
    from itertools import product
    def A349247(n):
        for a in product('13579',repeat=n):
            if set(str((m:=int(''.join(a)))*(m+1)>>1)) <= {'1', '3', '5', '7', '9'}:
                return m # Chai Wah Wu, Sep 08 2022
    
  • Python
    A349247 = lambda n: next_A347475(10**n//9) # M. F. Hasler, Sep 10 2022

Formula

a(n) = min { k in A347475 | k >= 10^(n-1) }.

A350536 a(n) is the smallest proper multiple of 2n+1 which contains only odd digits, or -1 if no such multiple exists.

Original entry on oeis.org

3, 9, 15, 35, 99, 33, 39, 75, 51, 57, 315, 115, 75, 135, 319, 93, 99, 175, 111, 117, 533, 559, 135, 517, 539, 153, 159, 715, 171, 177, 793, 315, 195, 335, 759, 355, 511, 375, 539, 395, 1377, 913, 595, 957, 979, 1911, 1395, 1995, 3395, 9999, 1111, 515, 315, 535, 1199, 333
Offset: 0

Views

Author

Bernard Schott, Jan 04 2022

Keywords

Comments

Generalization of the problem 1/2 of International Mathematical Talent Search, round 2 (see link and 2nd example).
If the escape clause is used, it will be necessarily for terms coming from n = 12 + 25*k, k >= 0.

Examples

			a(10) = 315 = 21 * 15 is the smallest multiple of 21 which contains only odd digits.
a(4998) = 33339995 = 9997 * 3335 is the smallest multiple of 9997 which contains only odd digits, so this is the answer to the IMTS problem.
		

Crossrefs

Terms belong to A014261.

Programs

  • Mathematica
    a[n_] := Module[{m = 2*n + 1, k}, k = 3*m; While[!AllTrue[IntegerDigits[k], OddQ], k += 2*m]; k]; Array[a, 50, 0] (* Amiram Eldar, Jan 04 2022 *)
  • PARI
    isok(k) = my(d=digits(k)); #d == #select(x->((x%2)==1), d);
    a(n) = my(k=6*n+3); while (!isok(k), k+=4*n+2); k; \\ Michel Marcus, Jan 04 2022
    
  • Python
    from itertools import product, count
    def A350536(n):
        m = 2*n+1
        for l in count(len(str(m))):
            for s in product('13579',repeat=l):
                k = int(''.join(s))
                if k > m and k % m == 0:
                    return k # Chai Wah Wu, Jan 11 2022

Extensions

More terms from Michel Marcus, Jan 04 2022

A355277 Largest n-digit number k with only odd digits such that the k-th triangular number also has only odd digits.

Original entry on oeis.org

5, 17, 177, 5573, 79137, 791377, 7913777, 79971937, 557335733, 5995957537, 59995599137, 599591791137, 7991739957973, 79971739957537, 799739357539937, 7991713197753777, 79991971791119137, 799999173991317537, 7997391313911797973
Offset: 1

Views

Author

M. F. Hasler, Sep 07 2022

Keywords

Comments

It appears that all a(n), n > 12, have initial digits "799".
The first digit of a(n) is never 9. - Chai Wah Wu, Sep 08 2022
As in A347475, all terms with more than 2 digits end in 33, 37, 73 or 77. - M. F. Hasler, Sep 12 2022

Examples

			T(5) = A000217(5) = 5*6/2 = 5*3 = 15 has only odd digits, and neither T(7) nor T(9) have this property, therefore a(1) = 5.
		

Crossrefs

Cf. A000217 (triangular numbers), A014261 (numbers with only odd digits), A117960 (triangular numbers with only odd digits), A349243 (indices of the former), A347475 (such indices with only odd digits), A349247 (least k-digit term).

Programs

  • PARI
    apply( A355277(n)=A347475_prec(10^n), [1..15]) \\ M. F. Hasler, Sep 08 2022
  • Python
    from itertools import product
    def A355277(n):
        for a in '7531':
            for b in product('97531',repeat=n-1):
                m = int(a+''.join(b))
                if set(str(m*(m+1)>>1)) <= {'1', '3', '5', '7', '9'}:
                    return m # Chai Wah Wu, Sep 08 2022
    

Formula

a(n) = max { k in A347475 | k < 10^n }.

A066640 Numbers such that all divisors have only odd digits.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 31, 33, 35, 37, 39, 51, 53, 55, 57, 59, 71, 73, 77, 79, 91, 93, 95, 97, 99, 111, 113, 117, 119, 131, 133, 137, 139, 151, 153, 155, 157, 159, 171, 173, 177, 179, 191, 193, 197, 199
Offset: 1

Views

Author

Amarnath Murthy, Dec 28 2001

Keywords

Comments

Is this sequence infinite? - Charles R Greathouse IV, Sep 07 2012

Examples

			77 = 11 * 7 belongs to this sequence but 75 does not as 25 (with a 2) divides 75.
		

Crossrefs

Subsequence of A014261. A030096 is a subsequence.

Programs

  • Mathematica
    Select[Range[250], And@@OddQ/@Flatten[IntegerDigits/@Divisors[ # ]]&]
  • PARI
    f(n)=vecmin(Vec(Vecsmall(Str(n)))%2)
    is(n)=fordiv(n,d,if(!f(d),return(0)));1 \\ Charles R Greathouse IV, Sep 07 2012
    
  • Python
    from itertools import islice, count
    from sympy import divisors
    def A066640(): return filter(lambda n: all(set(str(m)) <= {'1','3','5','7','9'} for m in divisors(n,generator=True)), count(1,2))
    A066640_list = list(islice(A066640(),20)) # Chai Wah Wu, Nov 22 2021

Extensions

Corrected and extended by Harvey P. Dale, Jan 01 2002

A076704 Numbers k of the form p^q where both p and q are prime and all digits of k are odd.

Original entry on oeis.org

9, 1331, 357911, 5177717, 5735339, 9393931, 17171515157399, 335571975137771, 7979737131773191, 13337513771953951, 13137917533317175739371379, 33159599371999557199755557, 1593395573971551557179777111133, 131755773357537951113179771515713, 315113377779977515359339551539771
Offset: 1

Views

Author

Zak Seidov, Oct 26 2002

Keywords

Comments

Up to 10^17, there are only 10 odd-digit prime powers of prime numbers. a(1) = 3^2, a(2) = 11^3, a(3) = 71^3, a(4) = 173^3, a(5) = 179^3, a(6) = 211^3, a(7) = 25799^3, a(8) = 69491^3, a(9) = 199831^3, and a(10) = 237151^3.
The only candidates for even-digit prime powers of prime numbers are of the form 2^n, and below 2^10000 there are only 2, 4, 8, 64, and 2048, two of which are not raised to prime powers.
a(11) <= 13137917533317175739371379 and a(12) <= 33159599371999557199755557. - Jinyuan Wang, Mar 02 2020

Crossrefs

Programs

  • Mathematica
    pp = Sort[ Flatten[ Table[ Prime[n]^Prime[i], {n, 1, PrimePi[ Sqrt[10^17]]}, {i, 1, PrimePi[ Floor[ Log[ Prime[n], 10^17]]]}]]]; Do[ If[ Union[ OddQ[ IntegerDigits[ pp[[n]]]]] == {True}, Print[ pp[[n]]]], {n, 1, Length[pp]}]
  • PARI
    lista(nn) = {my(k, v=List([])); forprime(p=2, nn, forprime(q=2, logint(nn, p), if(Set(digits(k=p^q)%2)==[1], listput(v, k)))); Set(v); } \\ Jinyuan Wang, Mar 02 2020

Extensions

Edited and extended by Robert G. Wilson v, Oct 31 2002
Corrected and edited by Elliott Line, Jul 11 2013
Better definition from Jon E. Schoenfield, Nov 19 2018
Terms a(11) and beyond from Giovanni Resta, Mar 03 2020
Previous Showing 31-40 of 67 results. Next