cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 191 results. Next

A098151 Number of partitions of 2*n with no part divisible by 3 and all odd parts occurring with even multiplicities.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 24, 36, 52, 74, 104, 144, 198, 268, 360, 480, 634, 832, 1084, 1404, 1808, 2316, 2952, 3744, 4728, 5946, 7448, 9294, 11556, 14320, 17688, 21780, 26740, 32736, 39968, 48672, 59122, 71644, 86616, 104484, 125768, 151072, 181104, 216684
Offset: 0

Views

Author

Noureddine Chair, Aug 29 2004

Keywords

Comments

There are no partitions of 2n+1 in which all odd parts occur with even multiplicity. - Michael Somos, Apr 15 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is also the number of Schur overpartitions of n, i.e., the number of overpartitions of n where adjacent parts differ by at least 3 if the smaller is overlined or divisible by 3 and adjacent parts differ by at least 6 if the smaller is overlined and divisible by 3. - Jeremy Lovejoy, Mar 23 2015
Let A(q) denote the g.f. of this sequence. Let m be a nonzero integer. The simple continued fraction expansions of the real numbers A(1/(2*m)) and A(1/(2*m+1)) may be predictable. For a given positive integer n, the sequence of the n-th partial denominators of the continued fractions are conjecturally polynomial or quasi-polynomial in m for m sufficiently large. An example is given below. Cf. A080054. - Peter Bala, Jun 09 2025

Examples

			a(4)=10 because 8 = 4+4 = 4+2+2=2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 4+2+1+1 = 4+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
G.f. = 1 + 2*q + 4*q^2 + 6*q^3 + 10*q^4 + 16*q^5 + 24*q^6 + 36*q^7 + 52*q^8 + ...
From _Peter Bala_, Jun 09 2025: (Start)
G.f.: A(q) = f(q, q^2) / f(-q, -q^2).
Simple continued fraction expansions of A(1/(2*m)):
m =  2  [1;  1   9  1    5    8    45   4  1  2  1  1  1  3  3   2  2 ...]
m =  3  [1;  2  13  1   14   12   133   8  1  1  7  2  1  2  2   1  1 ...]
m =  4  [1;  3  17  1   27   16   297  12  2  2  1  1  1  2  2   2  2 ...]
m =  5  [1;  4  21  1   44   20   561  16  2  1  7  3  3  2  2  25  8 ...]
m =  6  [1;  5  25  1   65   24   949  20  3  2  1  1  1  3  4   2  1 ...]
m =  7  [1;  6  29  1   90   28  1485  24  3  1  7  4  5  2  1   1  6 ...]
m =  8  [1;  7  33  1  119   32  2193  28  4  2  1  1  1  4  6   2  1 ...]
m =  9  [1;  8  37  1  152   36  3097  32  4  1  7  5  7  2  1   1  3 ...]
m = 10  [1;  9  41  1  189   40  4221  36  5  2  1  1  1  5  8   2  1 ...]
...
The sequence of the 4th partial denominators [5, 14, 27, 44, ...] appears to be given by the polynomial (2*m + 1)*(m - 1) for m >= 2.
The sequence of the 6th partial denominators [45, 133, 297, 561, ...] appears to be given by the polynomial (2*m + 1)*(2*m^2 + 1) for m >= 2. (End)
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k+x^(2*k))/(1-x^k+x^(2*k)),k=1..150),x=0,100);
    # alternative program using expansion of f(q, q^2) / f(-q, -q^2):
    with(gfun): series( add(x^(n*(3*n-1)/2),n = -8..8)/add((-1)^n*x^(n*(3*n-1)/2), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^3]^2 / (QPochhammer[ q]^2 QPochhammer[ q^6]), {q, 0, n}] (* Michael Somos, Oct 23 2013 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1)) * (1+x^(3*k-2)) / ((1-x^(3*k-1)) * (1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Dec 04 2004 */

Formula

Expansion of phi(-q^3) / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Apr 15 2012
Expansion of f(q, q^2) / f(-q, -q^2) in powers of q where f(,) is the Ramanujan two-variable theta function. - Michael Somos, Apr 15 2012
Expansion of eta(q^2) * eta(q^3)^2 / (eta(q)^2 * eta(q^6)) in powers of q.
G.f. = (Sum_{n = -oo..oo} (-1)^n*q^(3*n^2)) / (Sum_{n = -oo..oo} (-1)^n*q^(n^2)). - N. J. A. Sloane, Aug 09 2016
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + u^2) * (u^2 + v^4) - 4 * u^2*v^4. - Michael Somos, Apr 15 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v + 3 * u*v^2 - 3 * u^2*v^3. - Michael Somos, Dec 04 2004
Euler transform of period 6 sequence [2, 1, 0, 1, 2, 0, ...]. - Vladeta Jovovic, Sep 24 2004
Taylor series of product_{k=1..inf}(1+x^k+x^(2*k))/(1-x^k+x^(2*k))= product_{k=1..inf}(1+x^k)(1-x^(3k))/((1-x^k)(1+x^(3k)))=Theta_4(0, x^3)/theta_4(0, x)
a(n) ~ Pi * BesselI(1, Pi*sqrt(2*n/3)) / (3*sqrt(2*n)) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/4) * 3^(3/4) * n^(3/4)) * (1 - 3*sqrt(3)/(8*Pi*sqrt(2*n)) - 45/(256*Pi^2*n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 09 2017
Convolution of A000726 and A003105. - R. J. Mathar, Nov 17 2017
From Peter Bala, Jun 09 2025: (Start)
G.f.: A(q) = Sum_{n = -oo..oo} q^(n*(3*n+1)/2) / Sum_{n = -oo..oo} (-1)^n * q^(n*(3*n+1)/2).
Recurrences:
a(n) - a(n-1) - a(n-2) + a(n-5) + a(n-7) - a(n-12) - a(n-15) + + - - ... = f(n), where [0, 1, 2, 5, 7, 12, 15, ...] is the sequence of generalized pentagonal numbers A001318, a(n) is set equal to 0 for negative n and f(n) = 1 if n is a generalized pentagonal number, otherwise f(n) = 0 (see A080995). Compare with the recurrence for the partition function p(n) = A000041(n).
a(n) - 2*a(n-1) + 2*a(n-4) - 2*a(n-9) + 2*a(n-16) - 2*a(n-25) + - ... = g(n), where g(n) = 2*(-1)^k if n is of the form 3*(k^2), otherwise g(n) = 0. (End)

A014968 Expansion of (1/theta_4 - 1)/2.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 20, 32, 50, 77, 116, 172, 252, 364, 520, 736, 1031, 1432, 1974, 2700, 3668, 4952, 6644, 8864, 11764, 15533, 20412, 26704, 34784, 45124, 58312, 75072, 96306, 123128, 156904, 199320, 252443, 318796, 401468, 504224, 631636, 789264, 983848, 1223532, 1518164, 1879620, 2322184, 2863040
Offset: 0

Views

Author

Keywords

Comments

Let p(n) = the number of partitions of n, p(i,n) = the number of parts of the i-th partition of n, d(i,n) = the number of different parts in the i-th partition of n. Then a(n) = Sum_{i=1..p(n)} Sum_{j=1..d(i,n)} binomial(d(i,n)-1, j-1). - Thomas Wieder, May 08 2005
a(n) is the sum of the number of partitions of n-1 with two kinds of part 1 + the number of partitions of n-6 with two kinds of parts 1 through 3 + the number of partitions of n-15 with two kinds of parts 1 through 5 + ... . - Gregory L. Simay, Aug 03 2019

Examples

			G.f.: x + 2*x^2 + 4*x^3 + 7*x^4 + 12*x^5 + 20*x^6 + 32*x^7 + 50*x^8 + ...
		

Crossrefs

Cf. Expansion of ((Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k) - 1)/k in powers of x: this sequence (k=2), A277968 (k=3), A277974 (k=5), A160549 (k=7), A277912 (k=11).

Programs

  • Maple
    A014968 := proc(n::integer) local a,i,j,prttn,prttnlst,ZahlTeile,ZahlVerschiedenerTeile; with(combinat); a := 0; prttnlst:=partition(n); for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; ZahlTeile := nops(prttn); ZahlVerschiedenerTeile:=nops(convert(prttn,multiset)); for j from 1 to ZahlVerschiedenerTeile do a := a + binomial(ZahlVerschiedenerTeile-1,j-1); od; od; print("n, a(n): ",n, a); end proc;  for n from 0 to 20 do A014968(n) end do # Thomas Wieder, May 08 2005; fixed by Vaclav Kotesovec, Dec 16 2015
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, 0,
          b(n, i-1))+add(2*b(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    a:= n-> `if`(n=0, 0, b(n$2)/2):
    seq(a(n), n=0..49);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    a[ n_] := SeriesCoefficient[ (1 / EllipticTheta[ 4, 0, q] - 1) / 2, {q, 0, n}]; (* Michael Somos, Nov 03 2013 *)
    (QPochhammer[x^2]/QPochhammer[x]^2-1)/2 + O[x]^40 // CoefficientList[#, x]& (* Jean-François Alcover, Nov 07 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A)^2 - 1 ) / 2, n))}; /* Michael Somos, Nov 03 2013 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / (1 + x^k) * prod(j=1, k, (1 + x^j) / (1 - x^j), 1 + x * O(x^(n-k)))), n))}; /* Michael Somos, Nov 03 2013 */
    
  • PARI
    my(x='x+O('x^66)); concat([0],Vec(eta(x^2)/eta(x)^2-1)/2) \\ Joerg Arndt, Nov 27 2016

Formula

G.f.: Sum_{k>0} (x^k / (1 + x^k)) * Product_{j=1..k} (1 + x^j) / (1 - x^j). - Michael Somos, Nov 03 2013
2 * a(n) = A015128(n) unless n=0.
a(n) ~ exp(Pi*sqrt(n)) / (4*n) * (1 - 1/(Pi*sqrt(n))). - Vaclav Kotesovec, Nov 10 2016
G.f.: (Product_{k>=1} 1/(1-x^k))*(Sum_{k>=0} x^((2*k+1)*(k+1))/((1-x)*(1-x^2)*...*(1-x^(2*k+1)))). - Gregory L. Simay, Aug 03 2019

A211971 Column 0 of square array A211970 (in which column 1 is A000041).

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 16, 24, 36, 54, 78, 112, 160, 224, 312, 432, 590, 802, 1084, 1452, 1936, 2568, 3384, 4440, 5800, 7538, 9758, 12584, 16160, 20680, 26376, 33520, 42468, 53644, 67552, 84832, 106246, 132706, 165344, 205512, 254824, 315256, 389168, 479368
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

Partial sums give A015128. - Omar E. Pol, Jan 09 2014

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Differences[Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 60}]]}] (* Vaclav Kotesovec, Oct 25 2016 *)
    CoefficientList[Series[(1 - x)/EllipticTheta[4, 0, x], {x, 0, 43}], x] (* Robert G. Wilson v, Mar 06 2018 *)

Formula

a(n) ~ exp(Pi*sqrt(n))*Pi / (16*n^(3/2)) * (1 - (3/Pi + Pi/4)/sqrt(n) + (3/2 + 3/Pi^2+ Pi^2/24)/n). - Vaclav Kotesovec, Oct 25 2016, extended Nov 04 2016
G.f.: (1 - x)/theta_4(x), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Mar 05 2018

A299968 Number of normal generalized Young tableaux of size n with all rows and columns strictly increasing.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 189, 753, 3248, 14738, 70658, 354178, 1857703, 10121033, 57224955, 334321008, 2017234773, 12530668585, 80083779383, 525284893144, 3533663143981, 24336720018666, 171484380988738, 1234596183001927, 9075879776056533, 68052896425955296
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.

Examples

			The a(4) = 15 tableaux:
1 2 3 4
.
1 2 3   1 2 4   1 3 4   1 2 3   1 2 3
4       3       2       2       3
.
1 2   1 3   1 2
3 4   2 4   2 3
.
1 2   1 3   1 2   1 4   1 3
3     2     2     2     2
4     4     3     3     3
.
1
2
3
4
		

Crossrefs

Programs

  • Mathematica
    unddis[y_]:=DeleteCases[y-#,0]&/@Tuples[Table[If[y[[i]]>Append[y,0][[i+1]],{0,1},{0}],{i,Length[y]}]];
    dos[y_]:=With[{sam=Rest[unddis[y]]},If[Length[sam]===0,If[Total[y]===0,{{}},{}],Join@@Table[Prepend[#,y]&/@dos[sam[[k]]],{k,1,Length[sam]}]]];
    Table[Sum[Length[dos[y]],{y,IntegerPartitions[n]}],{n,1,8}]

Formula

a(n) = Sum_{k=0..n} 2^k * A238121(n,k). - Ludovic Schwob, Sep 23 2023

Extensions

More terms from Ludovic Schwob, Sep 23 2023

A359670 Triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) satisfying y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 21, 12, 1, 14, 62, 68, 20, 1, 24, 162, 284, 170, 30, 1, 40, 384, 998, 970, 360, 42, 1, 64, 855, 3092, 4410, 2720, 679, 56, 1, 100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1, 154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1, 232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Comments

Related identity: 0 = Sum_{-oo..+oo} (-1)^n * x^n * (y + x^n)^n, which holds formally for all y.
T(n,0) = A015128(n), the number of overpartitions of n, for n >= 0.
T(n+1,1) = A022571(n), the coefficient of x^n in Product_{m>=1} (1 + x^m)^6, for n >= 0.
A359711(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A359712(n) = Sum_{k=0..n} T(n,k)*2^k for n >= 0.
A359713(n) = Sum_{k=0..n} T(n,k)*3^k for n >= 0.
A363104(n) = Sum_{k=0..n} T(n,k)*4^k for n >= 0.
A363105(n) = Sum_{k=0..n} T(n,k)*5^k for n >= 0.
A359714(n) = T(2*n,n) for n >= 0 (central terms).
A359715(n) = T(n+2,2) for n >= 0.
A359718(n) = T(n+3,3) for n >= 0.
A363142(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0. - Paul D. Hanna, May 18 2023
From Paul D. Hanna, May 20 2023: (Start)
A363182(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 2^(n-2*k) for n >= 0.
A363183(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 3^(n-2*k) for n >= 0.
A363184(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 4^(n-2*k) for n >= 0.
A363185(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 5^(n-2*k) for n >= 0. (End)

Examples

			G.f.: A(x,y) = 1 + x*(2 + y) + x^2*(4 + 6*y + y^2) + x^3*(8 + 21*y + 12*y^2 + y^3) + x^4*(14 + 62*y + 68*y^2 + 20*y^3 + y^4) + x^5*(24 + 162*y + 284*y^2 + 170*y^3 + 30*y^4 + y^5) + x^6*(40 + 384*y + 998*y^2 + 970*y^3 + 360*y^4 + 42*y^5 + y^6) + x^7*(64 + 855*y + 3092*y^2 + 4410*y^3 + 2720*y^4 + 679*y^5 + 56*y^6 + y^7) + x^8*(100 + 1806*y + 8724*y^2 + 17172*y^3 + 15627*y^4 + 6608*y^5 + 1176*y^6 + 72*y^7 + y^8) + x^9*(154 + 3648*y + 22904*y^2 + 59545*y^3 + 74682*y^4 + 47089*y^5 + 14392*y^6 + 1908*y^7 + 90*y^8 + y^9) + x^10*(232 + 7110*y + 56679*y^2 + 188700*y^3 + 311530*y^4 + 271698*y^5 + 125160*y^6 + 28764*y^7 + 2940*y^8 + 110*y^9 + y^10) + ...
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for n >= 0, k = 0..n, begins
[1];
[2, 1];
[4, 6, 1];
[8, 21, 12, 1];
[14, 62, 68, 20, 1];
[24, 162, 284, 170, 30, 1];
[40, 384, 998, 970, 360, 42, 1];
[64, 855, 3092, 4410, 2720, 679, 56, 1];
[100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1];
[154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1];
[232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1];
[344, 13434, 133516, 556085, 1169100, 1342684, 860664, 300888, 53640, 4345, 132, 1];
[504, 24702, 301664, 1542640, 4029237, 5884160, 4980320, 2438712, 666240, 94490, 6204, 156, 1];
[728, 44361, 657368, 4065868, 12940766, 23411339, 25215416, 16367874, 6302148, 1377464, 158708, 8606, 182, 1];
[1040, 78006, 1387854, 10253720, 39153924, 85994062, 114672768, 94919382, 48660900, 15071628, 2687454, 256022, 11648, 210, 1]; ...
RELATED SERIES.
Given g.f. F(x) of A361770, where
F(x) = 1 + 3*x + 14*x^2 + 80*x^3 + 510*x^4 + 3498*x^5 + 25145*x^6 + 186972*x^7 + 1426159*x^8 + 11096944*x^9 + 87736474*x^10 + ... + A361770(n)*x^n + ...
then
(1) F(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * F(x)^k,
(2) F(x) = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^2 + x^(n-1))^(n+1).
Given g.f. G(x) of A363135, where
G(x) = 1 + 3*x + 17*x^2 + 133*x^3 + 1201*x^4 + 11796*x^5 + 122192*x^6 + 1314266*x^7 + 14536760*x^8 + 164299909*x^9 + ... + A363135(n)*x^n + ...
then
(1) G(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * G(x)^(2*k),
(2) G(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^3 + x^(n-1))^(n+1).
		

Crossrefs

Cf. A359711 (row sums), A359712 (y=2), A359713 (y=3), A363104(y=4), A363105 (y=5).
Cf. A359714 (central terms), A359715 (column 2), A359718 (column 3).

Programs

  • PARI
    {T(n,k) = my(A=1); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( polcoeff( A,n,x),k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))
    
  • PARI
    {T(n,k) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); polcoeff( A[n+1],k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n*y^k may be described as follows.
(1) y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).
(2) x*y = Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^(n+1).
(3) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n-1).
(4) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^n ].
(5) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^(n+1))^n ].
From Paul D. Hanna, May 18 2023: (Start)
(6) y = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (y*A(x,y) + x^n)^n.
(7) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (y*A(x,y) + x^n)^n ].
(8) x*y = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (y*A(x,y) + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^n. (End)

A001524 Number of stacks, or arrangements of n pennies in contiguous rows, each touching 2 in row below.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 12, 18, 26, 38, 53, 75, 103, 142, 192, 260, 346, 461, 607, 797, 1038, 1348, 1738, 2234, 2856, 3638, 4614, 5832, 7342, 9214, 11525, 14369, 17863, 22142, 27371, 33744, 41498, 50903, 62299, 76066, 92676, 112666, 136696, 165507, 200018
Offset: 0

Views

Author

Keywords

Comments

Also n-stacks with strictly receding left wall.
Weakly unimodal compositions such that each up-step is by at most 1 (and first part 1). By dropping the requirement for weak unimodality one obtains A005169. - Joerg Arndt, Dec 09 2012
The values of a(19) and a(20) in Auluck's table on page 686 are wrong (they have been corrected here). - David W. Wilson, Mar 07 2015
Also the number of overpartitions of n having more overlined parts than non-overlined parts. For example, a(5) = 5 counts the overpartitions [5'], [4',1'], [3',2'], [3',1',1] and [2',2,1']. - Jeremy Lovejoy, Jan 15 2021

Examples

			For a(6)=8 we have the following stacks:
..x
.xx .xx. ..xx .x... ..x.. ...x. ....x
xxx xxxx xxxx xxxxx xxxxx xxxxx xxxxx xxxxxx
From _Franklin T. Adams-Watters_, Jan 18 2007: (Start)
For a(7) = 12 we have the following stacks:
..x. ...x
.xx. ..xx .xxx .xx.. ..xx. ...xx
xxxx xxxx xxxx xxxxx xxxxx xxxxx
and
.x.... ..x... ...x.. ....x. .....x
xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxxx
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A259095.

Programs

  • Maple
    s := 1+sum(z^(n*(n+1)/2)/((1-z^(n))*product((1-z^i), i=1..n-1)^2), n=1..50): s2 := series(s, z, 300): for j from 1 to 100 do printf(`%d,`,coeff(s2, z, j)) od: # James Sellers, Feb 27 2001
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i>n, 0, `if`(
          irem(n, i)=0, 1, 0)+add(j*b(n-i*j, i+1), j=1..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 03 2018
  • Mathematica
    m = 45; CoefficientList[ Series[Sum[ z^(n*(n+1)/2)/((1-z^(n))*Product[(1-z^i), {i, 1, n-1}]^2), {n, 1, m}], {z, 0, m}], z] // Prepend[Rest[#], 1] &
    (* Jean-François Alcover, May 19 2011, after Maple prog. *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=0,(sqrt(8*n + 1) - 1) / 2, x^((k^2 + k) / 2) / prod( i=1, k, (1 - x^i + x * O(x^n))^((iMichael Somos, Apr 27 2003 */

Formula

G.f.: sum(n>=1, q^(n*(n+1)/2) / prod(k=1..n-1, 1-q^k)^2 / (1-q^n) ). [Joerg Arndt, Jun 28 2013]
a(n) = sum_{m>0,k>0,2*k^2+k+2*m<=n-1} A008289(m,k)*A000041(n-k*(1+2k)-2*m-1). - [Auluck eq 29]
From Vaclav Kotesovec, Mar 03 2020: (Start)
Pi * sqrt(2/3) <= n^(-1/2)*log(a(n)) <= Pi * sqrt(5/6). [Auluck, 1951]
log(a(n)) ~ 2*Pi*sqrt(n/5). [Wright, 1971]
a(n) ~ exp(2*Pi*sqrt(n/5)) / (sqrt(2) * 5^(3/4) * (1 + sqrt(5)) * n). (End)
a(n) = A143184(n) - A340659(n). - Vaclav Kotesovec, Jun 06 2021

Extensions

Corrected by R. K. Guy, Apr 08 1988
More terms from James Sellers, Feb 27 2001

A106507 G.f.: Product_{k>0} (1-x^(2k-1))/(1-x^(2k)).

Original entry on oeis.org

1, -1, 1, -2, 3, -4, 5, -7, 10, -13, 16, -21, 28, -35, 43, -55, 70, -86, 105, -130, 161, -196, 236, -287, 350, -420, 501, -602, 722, -858, 1016, -1206, 1431, -1687, 1981, -2331, 2741, -3206, 3740, -4368, 5096, -5922, 6868, -7967, 9233, -10670, 12306, -14193
Offset: 0

Views

Author

Michael Somos, May 04 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). The present entry gives 1/psi(q).
For various G.f. versions see the reciprocals of the ones given in A010054. - Wolfdieter Lang, Jul 05 2016

Examples

			G.f. = 1 - x + x^2 - 2*x^3 + 3*x^4 - 4*x^5 + 5*x^6 - 7*x^7 + 10*x^8 + ...
G.f. of B(q) =  A(q^8) / q = 1/q - q^7 + q^15 - 2*q^23 + 3*q^31 - 4*q^39 + 5*q^47 - 7*q^55 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 3, 3rd equation, p. 41, 12th equation.

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^((-1)^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, May 28 2015 *)
    a[ n_] := SeriesCoefficient[ 2 x^(1/8) / EllipticTheta[ 2, 0, x^(1/2)] , {x, 0, n}]; (* Michael Somos, Jun 25 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] / QPochhammer[ x^2], {x, 0, n}]; (* Michael Somos, Nov 08 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x] / QPochhammer[ x^4], {x, 0, n}]; (* Michael Somos, Nov 08 2015 *)
    (QPochhammer[x, x^2, 1/2] + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^2 + A)^2, n))};

Formula

Expansion of 1 / psi(x) in powers of x where psi() is a Ramanujan theta function, which is Jacobi's theta_2(0, sqrt(x))/(2*x^(1/8)) function. See, e.g., the Eric Weisstein link.
Expansion of q^(1/8) * eta(q) / eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [ -1, 1, ...].
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^4 * (w^4 + 4*v^4) - v^6*w^2.
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u2*u6^3 + u2^2*u3^3 - u3^3*u6^2.
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^3*u6^2 + 3*u1^3*u2^2 - u2^3*u3*u6.
G.f.: Sum_{k>=0} a(k) * x^(8*k - 1) = 1 / (Sum_{k in Z} x^((4k + 1)^2)).
G.f.: 1 / (1 + x + x^3 + x^6 + ...) = 1 - x * (1 - x) / (1 - x^2)^2 + x^4 * (1 - x) * (1 - x^2) / ((1 - x^2)^2 * (1 - x^4)^2) + ... [Ramanujan] - Michael Somos, Jul 21 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A015128. - Michael Somos, Nov 01 2008
a(n) = (-1)^n * A006950(n). Convolution inverse of A010054.
Series reversion of A106336. - Michael Somos, May 10 2012
a(2*n) = A233758(n). a(2*n + 1) = - A233759(n). - Michael Somos, Nov 05 2015
G.f.: Product_{k>0} (1 - x^(2*k - 1)) / (1 - x^(2*k)). - Michael Somos, Nov 08 2015
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 08 2017

Extensions

Definition changed by N. J. A. Sloane, Aug 14 2007

A299108 Expansion of 1/(1 - x*Product_{k>=1} (1 + x^k)/(1 - x^k)).

Original entry on oeis.org

1, 1, 3, 9, 27, 79, 231, 675, 1971, 5755, 16805, 49071, 143289, 418411, 1221781, 3567663, 10417761, 30420401, 88829145, 259385701, 757419669, 2211704625, 6458291945, 18858546645, 55067931981, 160801210705, 469547855419, 1371104033121, 4003694720243
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2018

Keywords

Crossrefs

Antidiagonal sums of A288515.

Programs

  • Maple
    S:= series(1/(1-x/JacobiTheta4(0,x)),x,51):
    seq(coeff(S,x,n),n=0..50); # Robert Israel, Feb 02 2018
  • Mathematica
    nmax = 28; CoefficientList[Series[1/(1 - x Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 28; CoefficientList[Series[1/(1 - x/EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
    nmax = 28; CoefficientList[Series[1/(1 - x QPochhammer[-x, x]/QPochhammer[x, x]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 + x^k)/(1 - x^k)).
G.f.: 1/(1 - x/theta_4(x)), where theta_4() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A015128(k-1)*a(n-k).
a(n) ~ c * d^n, where d = 2.9200517419026569743994130834319365190407162724411912701937027582419975778... is the root of the equation EllipticTheta(4, 0, 1/d) * d = 1 and c = 0.372842695601022868809531452599286285949969156503576039087883242107... = 2*Log[r]*QPochhammer[r] / (2*QPochhammer[r] * (Log[1 - r] + Log[r] + QPolyGamma[1, r]) + r*Log[r] * (r * Derivative[0, 1][QPochhammer][-1, r] - 2*Derivative[0, 1][QPochhammer][r, r])), where r = 1/d. Equivalently, c = EllipticTheta[4, 0, r]^2 / (r *(EllipticTheta[4, 0, r] - r * Derivative[0, 0, 1][EllipticTheta][4, 0, r])). - Vaclav Kotesovec, Feb 03 2018, updated Mar 31 2018

A103265 Number of partitions of n in which both even and odd square parts occur in 2 forms c, c* and with multiplicity 1. There is no restriction on parts which are twice squares.

Original entry on oeis.org

1, 2, 2, 2, 4, 6, 6, 6, 8, 12, 14, 14, 16, 22, 26, 26, 30, 38, 44, 46, 52, 62, 70, 74, 80, 96, 110, 116, 124, 146, 166, 174, 186, 210, 238, 254, 272, 302, 338, 362, 384, 426, 470, 502, 532, 588, 646, 686, 726, 792, 872, 926, 980, 1062
Offset: 0

Views

Author

Noureddine Chair, Feb 27 2005

Keywords

Comments

Convolution of A001156 and A033461. - Vaclav Kotesovec, Aug 18 2015

Examples

			E.g. a(8)=8 because 8 can be written as 8, 44*, 422, 4*22, 4211*, 4*211*, 2222, 22211*.
		

Crossrefs

Programs

  • Maple
    series(product((1+x^(k^2))/(1-x^(k^2)),k=1..100),x=0,100);
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(k^2)) / (1-x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)

Formula

G.f.: Product_{k>0}((1+x^k^2)/(1-x^k^2)).
a(n) ~ exp(3 * ((4-sqrt(2))*zeta(3/2))^(2/3) * Pi^(1/3) * n^(1/3) / 4) * ((4-sqrt(2))*zeta(3/2))^(2/3) / (2^(7/2) * sqrt(3) * Pi^(7/6) * n^(7/6)). - Vaclav Kotesovec, Dec 29 2016

A235792 Total number of parts in all overpartitions of n.

Original entry on oeis.org

2, 6, 16, 34, 68, 128, 228, 390, 650, 1052, 1664, 2584, 3940, 5916, 8768, 12826, 18552, 26566, 37672, 52956, 73848, 102192, 140420, 191688, 260038, 350700, 470384, 627604, 833236, 1101080, 1448500, 1897438, 2475464, 3217016, 4165200, 5373714, 6909180, 8854288
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

It appears that a(n) is also the sum of largest parts of all overpartitions of n.
More generally, It appears that the total number of parts >= k in all overpartitions of n equals the sum of k-th largest parts of all overpartitions of n. In this case k = 1. Also the first column of A235797.
The equivalent sequence for partitions is A006128.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*j])
           (2*b(n-i*j, i-1)), j=1..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 21 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + Sum[ Function[l, l+{0, l[[1]]*j}][2*b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

log(a(n)) ~ Pi*sqrt(n). - Vaclav Kotesovec, Apr 13 2025

Extensions

More terms from Alois P. Heinz, Jan 21 2014
Previous Showing 21-30 of 191 results. Next