cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 191 results. Next

A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 3, 1, 1, 1, 10, 5, 2, 1, 1, 1, 16, 7, 3, 1, 1, 1, 1, 24, 11, 4, 2, 1, 1, 1, 1, 36, 15, 5, 3, 1, 1, 1, 1, 1, 54, 22, 7, 4, 2, 1, 1, 1, 1, 1, 78, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 112, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

In the infinite square array if k is positive then column k is related to the generalized m-gonal numbers, where m = k+4. For example: column 1 is related to the generalized pentagonal numbers A001318. Column 2 is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on...
In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041. It seems unusual that the partition numbers are located in a middle column (see below row 1 of the table):
========================================================
. Column k of
. this square
. Generalized Triangle Triangle array A211970
k m m-gonal "A" "B" [row sums of
. numbers triangle "B"
. (if k>=1) with a(0)=1,
. if k >= 0]
========================================================
...
It appears that column 2 of the square array is A006950.
It appears that column 3 of the square array is A036820.
The partial sums of column 0 give A015128. - Omar E. Pol, Feb 09 2014

Examples

			Array begins:
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
2,     2,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
4,     3,   2,   1,   1,   1,  1,  1,  1,  1,  1, ...
6,     5,   3,   2,   1,   1,  1,  1,  1,  1,  1, ...
10,    7,   4,   3,   2,   1,  1,  1,  1,  1,  1, ...
16,   11,   5,   4,   3,   2,  1,  1,  1,  1,  1, ...
24,   15,   7,   4,   4,   3,  2,  1,  1,  1,  1, ...
36,   22,  10,   5,   4,   4,  3,  2,  1,  1,  1, ...
54,   30,  13,   7,   4,   4,  4,  3,  2,  1,  1, ...
78,   42,  16,  10,   5,   4,  4,  4,  3,  2,  1, ...
112,  56,  21,  12,   7,   4,  4,  4,  4,  3,  2, ...
160,  77,  28,  14,  10,   5,  4,  4,  4,  4,  3, ...
224, 101,  35,  16,  12,   7,  4,  4,  4,  4,  4, ...
312, 135,  43,  21,  13,  10,  5,  4,  4,  4,  4, ...
432, 176,  55,  27,  14,  12,  7,  4,  4,  4,  4, ...
...
		

Crossrefs

For another version see A195825.

Formula

T(n,k) = A211971(n), if k = 0.
T(n,k) = A195825(n,k), if k >= 1.

A236002 Number of overcompositions of n.

Original entry on oeis.org

1, 2, 4, 12, 26, 60, 144, 324, 728, 1602, 3576, 7808, 17068, 36908, 79520, 170704, 364794, 777036, 1649456, 3491188, 7367544, 15513336, 32584648, 68307264, 142904080, 298448914, 622235060, 1295320004, 2692583916, 5589586996, 11588905844, 23999052692
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2014

Keywords

Comments

Analog to overpartitions, here an overcomposition is defined to be a composition in which the first occurrence of each distinct number may be overlined (see example).
Also 1 together with the row sums of A235999.
For the number of partitions of n see A000041.
For the number of compositions of n see A011782.
For the number of overpartitions of n see A015128.
Note that there are several orderings of overcompositions, the same as the orderings of compositions, but apparently for every ordering of overcompositions there are also several suborderings according to the arrangements of the overlined parts. The same for overpartitions. See one of them in Example section.

Examples

			For n = 4 the 26 overcompositions of 4 are: [4], [4'], [1,3], [1',3], [1,3'], [1',3'], [2,2], [2',2], [1,1,2], [1',1,2], [1,1,2'], [1',1,2'], [3,1], [3',1], [3,1'], [3',1'], [1,2,1], [1',2,1], [1,2',1], [1',2',1], [2,1,1], [2',1,1], [2,1',1], [2',1',1], [1,1,1,1], [1',1,1,1].
		

Crossrefs

Formula

a(n) = Sum_{k=1..A003056(n)} 2^k*A235998(n,k), n >= 1.

Extensions

a(7) corrected and more terms added, Joerg Arndt, Jan 20 2014
a(19)-a(31) from Alois P. Heinz, Jan 20 2014

A160461 Coefficients in the expansion of C/B^2, in Watson's notation of page 106.

Original entry on oeis.org

1, 2, 5, 10, 20, 35, 63, 105, 175, 280, 444, 685, 1050, 1575, 2345, 3439, 5005, 7195, 10275, 14525, 20405, 28428, 39375, 54150, 74080, 100715, 136265, 183365, 245645, 327485, 434810, 574790, 756965, 992950, 1297940, 1690500, 2194642, 2839695, 3663225, 4711160
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			x^3+2*x^27+5*x^51+10*x^75+20*x^99+35*x^123+63*x^147+...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): this sequence (k=1), A160462 (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 26 2016 *)

Formula

See Maple code in A160458 for formula.
a(n) ~ sqrt(3)*exp(sqrt(6*n/5)*Pi)/(20*n). - Vaclav Kotesovec, Nov 26 2016
G.f.: 1/Product_{n > = 1} ( 1 - x^(n/gcd(n,k)) ) for k = 5. Cf. A000041 (k = 1), A015128 (k = 2), A278690 (k = 3) and A298311 (k = 4). - Peter Bala, Nov 17 2020

A235790 Triangle read by rows: T(n,k) = 2^k*A116608(n,k), n>=1, k>=1.

Original entry on oeis.org

2, 4, 4, 4, 6, 8, 4, 20, 8, 24, 8, 4, 44, 16, 8, 52, 40, 6, 68, 80, 8, 88, 120, 16, 4, 108, 200, 32, 12, 116, 296, 80, 4, 148, 416, 160, 8, 176, 536, 320, 8, 176, 776, 480, 32, 10, 220, 936, 832, 64, 4, 236, 1232, 1232, 160, 12, 272, 1472, 1872, 320
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

It appears that T(n,k) is the number of overpartitions of n having k distinct parts. (This is true by definition, Joerg Arndt, Jan 20 2014).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
The first element of column k is A000079(k).

Examples

			Triangle begins:
2;
4;
4,    4;
6,    8;
4,   20;
8,   24,    8;
4,   44,   16;
8,   52,   40;
6,   68,   80;
8,   88,  120,   16;
4,  108,  200,   32;
12, 116,  296,   80;
4,  148,  416,  160;
8,  176,  536,  320;
8,  176,  776,  480,   32;
10, 220,  936,  832,   64;
4,  236, 1232, 1232,  160;
12, 272, 1472, 1872,  320;
4,  284, 1880, 2592,  640;
12, 324, 2216, 3632, 1152;
8,  328, 2704, 4944, 1856, 64;
...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          expand(b(n, i-1)+add(x*b(n-i*j, i-1), j=1..n/i))))
        end:
    T:= n->(p->seq(2^i*coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Jan 20 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-1] + Sum[x*b[n-i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[p, Table[2^i * Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Oct 20 2016, after Alois P. Heinz *)

A261386 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k).

Original entry on oeis.org

1, 4, 16, 56, 176, 520, 1456, 3896, 10048, 25100, 60960, 144440, 334752, 760456, 1696464, 3722224, 8043040, 17135624, 36031104, 74840568, 153680928, 312198160, 627828272, 1250540024, 2468443296, 4830809868, 9377190336, 18061370288, 34531009760, 65552873736
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A161870 and A026011.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k) / (1-x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/6 + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(2/9) / (A^2 * 2^(2/3) * n^(13/18) * sqrt(3*Pi)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
G.f.: exp(Sum_{k>=1} (sigma_2(2*k) - sigma_2(k))*x^k/k). - Ilya Gutkovskiy, Apr 14 2019

A277212 Expansion of Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5 in powers of x.

Original entry on oeis.org

1, 5, 20, 65, 190, 505, 1260, 2970, 6700, 14535, 30520, 62235, 123720, 240340, 457380, 854190, 1568230, 2834120, 5048140, 8871450, 15396690, 26410860, 44811440, 75254240, 125162100, 206275505, 337032360, 546183425, 878270360, 1401857550, 2221862260
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Comments

In general, for fixed m > 1, if g.f. = Product_{k>=1} (1 - x^(m*k))/(1 - x^k)^m, then a(n, m) ~ exp(Pi*sqrt(2*n*(m-1/m)/3)) * (m^2 - 1)^(m/4) / (2^(3*m/4 + 1/2) * 3^(m/4) * m^(m/4 + 1/2) * n^(m/4 + 1/2)). - Vaclav Kotesovec, Nov 10 2016

Examples

			G.f.: 1 + 5*x + 20*x^2 + 65*x^3 + 190*x^4 + 505*x^5 + 1260*x^6 + ...
		

Crossrefs

Cf. Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), A273845 (k=3), A274327 (k=4), this sequence (k=5), A160539 (k=7).
Cf. A109064.

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    S:= series(mul((1-x^(5*n))/(1-x^n)^5,n=1..N),x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Nov 09 2016
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
    (QPochhammer[x^5, x^5]/QPochhammer[x, x]^5 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(5*k))/(1-x^k)^5, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
    
  • PARI
    x='x+O('x^66); Vec(eta(x^5)/eta(x)^5) \\ Joerg Arndt, Nov 27 2016

Formula

G.f.: Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5.
a(n) ~ exp(4*Pi*sqrt(n/5)) / (sqrt(2) * 5^(7/4) * n^(7/4)). - Vaclav Kotesovec, Nov 10 2016
a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A285896(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017

A143184 Coefficients of a Ramanujan q-series.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 15, 23, 33, 49, 69, 98, 136, 188, 256, 348, 466, 622, 824, 1084, 1418, 1846, 2389, 3077, 3947, 5038, 6407, 8115, 10241, 12876, 16141, 20160, 25110, 31179, 38609, 47674, 58724, 72141, 88421, 108114, 131902, 160565, 195061, 236468
Offset: 0

Views

Author

Michael Somos, Jul 28 2008

Keywords

Comments

Also equal to the number of overpartitions of n with no non-overlined parts larger than the number of overlined parts. For example, the overpartitions counted by a(4) = 6 are: [4'], [3',1], [3',1'], [2',1,1], [2',1',1], [1',1,1,1]. - Jeremy Lovejoy, Aug 23 2021
Also the number of partitions into red and blue integers, where the red parts cover an initial segment of the positive integers, and there can be no blue integer if there is not also a red one with the same value. For example, when the red integers are marked with a prime, the partitions counted by a(4) are: [2',1',1], [2',1',1'], [1',1,1,1], [1',1',1,1], [1',1',1',1], [1',1',1',1']. - Christian Sievers, May 09 2025

Examples

			G.f. = 1 + q + 2*q^2 + 4*q^3 + 6*q^4 + 10*q^5 + 15*q^6 + 23*q^7 + 33*q^8 + ...
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 10

Crossrefs

Convolution with A002448 is A132211.
Cf. A015128 (has definition of overpartitions).

Programs

  • Maple
    b:= proc(n, i) option remember;
         `if`(i>n, 0, `if`(irem(n, i, 'r')=0, r, 0)+
          add(j*b(n-i*j, i+1), j=1..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 03 2018
  • Mathematica
    m = 50;
    Sum[x^(k(k+1)/2)/Product[1-x^j, {j, 1, k}]^2, {k, 0, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 20 2020 *)
  • PARI
    {a(n) = my(t); if(n<0, 0, t = 1 + x*O(x^n); polcoef(sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t*x^k/(1 - x^k)^2 + x*O(x^n), 1), n))};

Formula

G.f.: Sum_{k>=0} x^((k^2+k)/2) / ((1 - x) * (1 - x^2) ... (1 - x^k))^2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2^(3/2) * 5^(3/4) * n). - Vaclav Kotesovec, Nov 20 2020

A261610 Expansion of Product_{k>=0} (1 + x^(3*k+1))/(1 - x^(3*k+1)).

Original entry on oeis.org

1, 2, 2, 2, 4, 6, 6, 8, 12, 14, 16, 22, 28, 32, 40, 50, 58, 70, 86, 100, 118, 144, 168, 194, 232, 272, 312, 366, 428, 490, 568, 660, 754, 866, 1000, 1140, 1300, 1492, 1696, 1924, 2196, 2490, 2812, 3192, 3610, 4062, 4588, 5174, 5806, 6530, 7342, 8218, 9208
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(3*k+1))/(1 - x^(3*k+1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3)) * Gamma(1/3) / (2^(5/3) * 3^(1/3) * Pi^(2/3) * n^(2/3)).

A266648 Expansion of Product_{k>=1} (1 + x^(3*k)) / (1 - x^k).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 15, 21, 31, 46, 64, 89, 126, 170, 231, 314, 417, 552, 733, 955, 1244, 1617, 2079, 2665, 3413, 4331, 5485, 6931, 8704, 10901, 13629, 16949, 21033, 26045, 32123, 39529, 48553, 59429, 72599, 88518, 107624, 130599, 158209, 191175, 230611, 277717, 333730, 400375, 479598, 573386, 684481
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2016

Keywords

Comments

a(n) is the number of overpartitions wherein only parts that are a multiple of three may be overlined. - Alois P. Heinz, Feb 03 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(irem(i, 3)=0, 2, 1)*add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 03 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(7) * exp(sqrt(7*n)*Pi/3) / (24*n).

A338223 G.f.: (1 / theta_4(x) - 1)^2 / 4, where theta_4() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 12, 30, 68, 144, 289, 556, 1034, 1868, 3292, 5678, 9608, 15984, 26188, 42314, 67509, 106460, 166090, 256552, 392628, 595696, 896484, 1338894, 1985298, 2923840, 4278448, 6222518, 8997544, 12938368, 18507297, 26340040, 37307326, 52597320, 73825504, 103180702
Offset: 2

Views

Author

Ilya Gutkovskiy, Jan 30 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=2..37);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 37; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^2/4, {x, 0, nmax}], x] // Drop[#, 2] &
    nmax = 37; CoefficientList[Series[(1/4) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
    A015128[n_] := Sum[PartitionsP[k] PartitionsQ[n - k], {k, 0, n}]; a[n_] := (1/4) Sum[A015128[k] A015128[n - k], {k, 1, n - 1}]; Table[a[n], {n, 2, 37}]

Formula

G.f.: (1/4) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^2.
a(n) = Sum_{k=0..n} A014968(k) * A014968(n-k).
a(n) = (1/4) * Sum_{k=1..n-1} A015128(k) * A015128(n-k).
a(n) = (A001934(n) - 2 * A015128(n)) / 4 for n > 0.
Previous Showing 31-40 of 191 results. Next