A298311
Expansion of Product_{k>=1} 1/((1 - x^(2*k))*(1 - x^(2*k-1))^3).
Original entry on oeis.org
1, 3, 7, 16, 32, 61, 112, 197, 336, 560, 912, 1456, 2287, 3536, 5392, 8123, 12096, 17824, 26016, 37632, 53984, 76848, 108601, 152432, 212592, 294704, 406201, 556864, 759488, 1030784, 1392496, 1872784, 2508048, 3345184, 4444384, 5882747, 7758736, 10197712, 13358944, 17444256, 22708719
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2 k)) (1 - x^(2 k - 1))^3), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Product[(1 + x^k)^2/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A300415
Expansion of Product_{k>=2} (1 + x^k)/(1 - x^k).
Original entry on oeis.org
1, 0, 2, 2, 4, 6, 10, 14, 22, 32, 46, 66, 94, 130, 182, 250, 340, 462, 622, 830, 1106, 1462, 1922, 2518, 3282, 4256, 5502, 7082, 9078, 11602, 14774, 18746, 23722, 29922, 37630, 47202, 59044, 73662, 91682, 113830, 140994, 174262, 214906, 264462, 324802, 398110, 487018, 594694
Offset: 0
-
g:= (1-x)/((1+x)*JacobiTheta4(0,x)):
S:=series(g,x,101):
seq(coeff(S,x,j),j=0..100); # Robert Israel, Mar 05 2018
-
nmax = 47; CoefficientList[Series[Product[(1 + x^k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]
nmax = 47; CoefficientList[Series[(1 - x)/((1 + x) EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
A303360
Expansion of Product_{n>=1} ((1 + 4*x^n)/(1 - 4*x^n))^(1/4).
Original entry on oeis.org
1, 2, 4, 18, 34, 166, 384, 1902, 4756, 24022, 64284, 321542, 899658, 4455690, 12888944, 63185250, 187513426, 910880550, 2759413788, 13295839638, 40967821494, 195979968882, 612569599440, 2911592648458, 9213101043936, 43538337410474, 139246245625364
Offset: 0
Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)):
A015128 (b=0),
A303346 (b=1), this sequence (b=2).
-
seq(coeff(series(mul(((1+4*x^k)/(1-4*x^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Apr 22 2018
-
nmax = 30; CoefficientList[Series[Product[((1 + 4*x^k)/(1 - 4*x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4*x^k)/(1-4*x^k))^(1/4)))
A303361
Expansion of Product_{n>=1} ((1 + (4*x)^n)/(1 - (4*x)^n))^(1/4).
Original entry on oeis.org
1, 2, 10, 60, 262, 1372, 7044, 32760, 153670, 789676, 3659820, 17109320, 83073180, 381273240, 1786996424, 8604391920, 38832248902, 179714213580, 845485079580, 3834271942440, 17666638985652, 81920437065288, 370224975781560, 1685489994025360
Offset: 0
Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)):
A015128 (b=0),
A303307 (b=1), this sequence (b=2).
-
seq(coeff(series(mul(((1+(4*x)^k)/(1-(4*x)^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Apr 22 2018
-
nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] * 4^Range[0, nmax] (* Vaclav Kotesovec, Apr 23 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+(4*x)^k)/(1-(4*x)^k))^(1/4)))
A321884
Number A(n,k) of partitions of n into colored blocks of equal parts with colors from a set of size k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 6, 8, 5, 0, 1, 5, 8, 15, 14, 7, 0, 1, 6, 10, 24, 27, 24, 11, 0, 1, 7, 12, 35, 44, 51, 40, 15, 0, 1, 8, 14, 48, 65, 88, 93, 64, 22, 0, 1, 9, 16, 63, 90, 135, 176, 159, 100, 30, 0, 1, 10, 18, 80, 119, 192, 295, 312, 264, 154, 42, 0
Offset: 0
A(3,2) = 8: 3a, 3b, 2a1a, 2a1b, 2b1a, 2b1b, 111a, 111b.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 2, 4, 6, 8, 10, 12, 14, 16, ...
0, 3, 8, 15, 24, 35, 48, 63, 80, ...
0, 5, 14, 27, 44, 65, 90, 119, 152, ...
0, 7, 24, 51, 88, 135, 192, 259, 336, ...
0, 11, 40, 93, 176, 295, 456, 665, 928, ...
0, 15, 64, 159, 312, 535, 840, 1239, 1744, ...
0, 22, 100, 264, 544, 970, 1572, 2380, 3424, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
A358369
Euler transform of 2^floor(n/2), (A016116).
Original entry on oeis.org
1, 1, 3, 5, 12, 20, 43, 73, 146, 250, 475, 813, 1499, 2555, 4592, 7800, 13761, 23253, 40421, 67963, 116723, 195291, 332026, 552882, 932023, 1544943, 2585243, 4267081, 7094593, 11662769, 19281018, 31575874, 51937608, 84753396, 138772038, 225693778, 368017636
Offset: 0
Sequences that can be represented as a EulerTransform(BinaryRecurrenceSequence()) include
A000009,
A000041,
A000712,
A001970,
A002513,
A010054,
A015128,
A022567,
A034691,
A111317,
A111335,
A117410,
A156224,
A166861,
A200544,
A261031,
A261329,
A358449.
-
BinaryRecurrenceSequence := proc(b, c, u0:=0, u1:=1) local u;
u := proc(n) option remember; if n < 2 then return [u0, u1][n + 1] fi;
b*u(n - 1) + c*u(n - 2) end; u end:
EulerTransform := proc(a) local b;
b := proc(n) option remember; if n = 0 then return 1 fi; add(add(d * a(d),
d = NumberTheory:-Divisors(j)) * b(n-j), j = 1..n) / n end; b end:
a := EulerTransform(BinaryRecurrenceSequence(0, 2, 1)): seq(a(n), n=0..36);
-
from typing import Callable
from functools import cache
from sympy import divisors
def BinaryRecurrenceSequence(b:int, c:int, u0:int=0, u1:int=1) -> Callable:
@cache
def u(n: int) -> int:
if n < 2:
return [u0, u1][n]
return b * u(n - 1) + c * u(n - 2)
return u
def EulerTransform(a: Callable) -> Callable:
@cache
def b(n: int) -> int:
if n == 0:
return 1
s = sum(sum(d * a(d) for d in divisors(j)) * b(n - j)
for j in range(1, n + 1))
return s // n
return b
b = BinaryRecurrenceSequence(0, 2, 1)
a = EulerTransform(b)
print([a(n) for n in range(37)])
-
# uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(0, 2, 1)
a = EulerTransform(b)
print([a(n) for n in range(37)])
A274327
Expansion of Product_{n>=1} (1 - x^(4*n))/(1 - x^n)^4 in powers of x.
Original entry on oeis.org
1, 4, 14, 40, 104, 248, 560, 1200, 2474, 4924, 9520, 17928, 33008, 59528, 105408, 183536, 314744, 532208, 888382, 1465208, 2389808, 3857456, 6166096, 9766576, 15336816, 23888844, 36924656, 56659296, 86341664, 130710104, 196640576, 294059872, 437232746, 646561792
Offset: 0
G.f.: 1 + 4*x + 14*x^2 + 40*x^3 + 104*x^4 + 248*x^5 + 560*x^6 + ...
-
nmax = 50; CoefficientList[Series[Product[(1 - x^(4*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
(QPochhammer[x^4, x^4]/QPochhammer[x, x]^4 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
-
first(n)=my(x='x);Vec(prod(k=1,n,(1-x^(4*k))/(1-x^k)^4,1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
A300274
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} (1 + x^n)/(1 - x^n).
Original entry on oeis.org
2, 2, 6, 10, 22, 30, 62, 86, 146, 206, 342, 454, 726, 974, 1442, 1962, 2862, 3762, 5398, 7094, 9834, 12942, 17726, 22938, 31042, 40094, 53254, 68518, 90246, 114914, 150142, 190550, 245906, 310942, 398554, 500474, 637590, 797534, 1007714, 1255850, 1578526, 1956786
Offset: 1
-
nn = 42; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[(1 + x^n)/(1 - x^n), {n, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
s[n_] := SeriesCoefficient[Product[(1 + x^k)/(1 - x^k), {k, 1, n}], {x, 0, n}]; a[n_] := Sum[MoebiusMu[n/d] s[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 42}]
A303381
Expansion of Product_{n>=1} ((1 + (8*x)^n)/(1 - (8*x)^n))^(1/8).
Original entry on oeis.org
1, 2, 18, 204, 1526, 15228, 146676, 1217880, 10322982, 106429420, 886934236, 7632390312, 72137002428, 600860144728, 5351962341672, 51402944345520, 411439139563526, 3624067316629836, 33666668386023244, 279519776297893512, 2480351338204454484
Offset: 0
Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)):
A015128 (b=0),
A303307 (b=1),
A303361 (b=2), this sequence (b=3).
-
seq(coeff(series(mul(((1+(8*x)^k)/(1-(8*x)^k))^(1/8), k = 1..n), x, n+1), x, n), n = 0..25); # Muniru A Asiru, Apr 23 2018
-
nmax = 20; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/8), {k, 1, nmax}], {x, 0, nmax}], x] * 8^Range[0, nmax] (* Vaclav Kotesovec, Apr 23 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+(8*x)^k)/(1-(8*x)^k))^(1/8)))
A303391
Expansion of Product_{k>=1} (1 + 4*x^k)/(1 - 4*x^k).
Original entry on oeis.org
1, 8, 40, 200, 872, 3720, 15400, 62920, 254440, 1024648, 4112680, 16483400, 66000360, 264150920, 1056903080, 4228272200, 16914393832, 67660396040, 270647139240, 1082600410440, 4330424811880, 17321748357640, 69287088965800, 277148557003720, 1108594618342760
Offset: 0
-
N:= 50: # for a(0)..a(N)
G:= mul((1+4*x^k)/(1-4*x^k),k=1..N):
S:= series(G,x,N+1):
seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 13 2019
-
nmax = 25; CoefficientList[Series[Product[(1+4*x^k)/(1-4*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Comments