cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 64 results. Next

A033983 Integers n such that 2^n == 15 (mod n).

Original entry on oeis.org

1, 13, 481, 44669, 1237231339, 1546675117, 62823773963, 284876771881, 1119485807557, 26598440989093
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

No other terms below 10^14.

Crossrefs

Programs

  • Mathematica
    m = 15; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

One more term from Joe K. Crump (joecr(AT)carolina.rr.com), Jun 20 2000
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Terms 1, 13 prepended by Max Alekseyev, May 18 2011
a(10) from Max Alekseyev, Dec 15 2013

A051447 Integers n such that 2^n == 9 (mod n).

Original entry on oeis.org

1, 7, 2228071, 16888457, 352978207, 1737848873, 77362855777, 567442642711
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

No other terms below 10^15. [Max Alekseyev, May 20 2012]

Crossrefs

Programs

  • Mathematica
    m = 9; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Edited by N. J. A. Sloane, Jun 22 2008, at the suggestion of Don Reble
Terms 1, 7 prepended by Max Alekseyev, May 18 2011

A128121 Numbers k such that 2^k == 5 (mod k).

Original entry on oeis.org

1, 3, 19147, 129505699483, 674344345281, 1643434407157, 5675297754009, 12174063716147, 162466075477787, 313255455573801, 324082741109271
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128122, A128123, A128124, A128125, A128126.

Programs

  • Mathematica
    m = 5; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 3 added by N. J. A. Sloane, Apr 23 2007
Missing a(10) inserted by Sergey Paramonov, Sep 06 2021

A128122 Numbers m such that 2^m == 6 (mod m).

Original entry on oeis.org

1, 2, 10669, 6611474, 43070220513807782
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^17. - Max Alekseyev, Nov 18 2022
A large term: 862*(2^861-3)/281437921287063162726198552345362315020202285185118249390789 (203 digits). - Max Alekseyev, Sep 24 2016

Examples

			2 == 6 (mod 1), so 1 is a term;
4 == 6 (mod 2), so 2 is a term.
		

Crossrefs

Solutions to 2^m == k (mod m): A000079 (k=0),A187787 (k=1/2), A296369 (k=-1/2), A006521 (k=-1), A296370 (k=3/2), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), this sequence (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    m = 6; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 2 added by N. J. A. Sloane, Apr 23 2007
a(5) from Max Alekseyev, Nov 18 2022

A056969 a(n) = 10^n modulo n.

Original entry on oeis.org

0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 10, 4, 10, 2, 10, 0, 10, 10, 10, 0, 13, 12, 10, 16, 0, 22, 1, 4, 10, 10, 10, 0, 10, 32, 5, 28, 10, 24, 25, 0, 10, 22, 10, 12, 10, 8, 10, 16, 31, 0, 31, 16, 10, 28, 10, 16, 31, 42, 10, 40, 10, 38, 55, 0, 30, 34, 10, 4, 34, 60, 10, 64, 10, 26, 25, 44, 54, 40
Offset: 1

Views

Author

Henry Bottomley, Jul 20 2000

Keywords

Examples

			a(7) = 3 since 10000000 = 7*1428571+3
		

Crossrefs

Cf. k^n mod n: A015910 (k=2), A066601 (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), A066438 (k=7), A066439 (k=8), A066440 (k=9), this sequence (k=10), A066441 (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(10^n,n),n=1..78); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[10, n, n], {n, 80} ]
  • PARI
    a(n) = lift(Mod(10, n)^n); \\ Michel Marcus, Oct 19 2017

Formula

a(n) = 10*A056968(n) mod n = A011557(n) mod n.

A066438 a(n) = 7^n mod n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 0, 1, 1, 9, 7, 1, 7, 7, 13, 1, 7, 1, 7, 1, 7, 5, 7, 1, 7, 23, 1, 21, 7, 19, 7, 1, 13, 15, 28, 1, 7, 11, 31, 1, 7, 7, 7, 25, 37, 3, 7, 1, 0, 49, 37, 9, 7, 1, 43, 49, 1, 49, 7, 1, 7, 49, 28, 1, 37, 37, 7, 21, 67, 49, 7, 1, 7, 49, 43, 45, 28, 25, 7, 1
Offset: 1

Views

Author

Robert G. Wilson v, Dec 27 2001

Keywords

Crossrefs

Cf. k^n mod n; A015910 (k=2), A066601 (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), this sequence (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), A066441 (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(7^n,n),n=1..80); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[7, n, n], {n, 80} ]
  • PARI
    a(n) = { lift(Mod(7, n)^n) } \\ Harry J. Smith, Feb 14 2010

A128123 Numbers k such that 2^k == 10 (mod k).

Original entry on oeis.org

1, 2, 6, 18, 16666, 262134, 4048124214, 24430928839, 243293052886, 41293676570106, 3935632929857549
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

Some larger terms: 266895924489780149, 2335291686841914329, 18494453435532853111

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128124, A128125, A128126.

Programs

  • Mathematica
    m = 10; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1, 2 and 6 added by N. J. A. Sloane, Apr 23 2007
Missing terms a(9)-a(10) added by Max Alekseyev, Dec 16 2013
a(11) from Max Alekseyev, Sep 27 2016

A082495 a(n) = (2^n - 1) mod n.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 7, 7, 3, 1, 3, 1, 3, 7, 15, 1, 9, 1, 15, 7, 3, 1, 15, 6, 3, 25, 15, 1, 3, 1, 31, 7, 3, 17, 27, 1, 3, 7, 15, 1, 21, 1, 15, 16, 3, 1, 15, 29, 23, 7, 15, 1, 27, 42, 31, 7, 3, 1, 15, 1, 3, 7, 63, 31, 63, 1, 15, 7, 43, 1, 63, 1, 3, 67, 15, 17, 63, 1, 15, 79, 3, 1, 63, 31, 3, 7, 79
Offset: 1

Views

Author

Anonymous, Apr 28 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A015910(n) + A048298(n) - 1.

A128124 Numbers k such that 2^k == 12 (mod k).

Original entry on oeis.org

1, 2, 4, 5, 3763, 125714, 167716, 1803962, 2895548, 4031785, 36226466, 16207566916, 103742264732, 29000474325364, 51053256144532, 219291270961199, 1611547934753332, 5816826177630619
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Programs

  • Mathematica
    m = 12; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

More terms from Ryan Propper, Mar 23 2007
1, 2, 4 and 5 added by N. J. A. Sloane, Apr 23 2007
a(13)-a(15) from Max Alekseyev, May 19 2011
a(15) corrected, a(16)-a(18) added by Max Alekseyev, Oct 02 2016

A066603 a(n) = 5^n mod n.

Original entry on oeis.org

0, 1, 2, 1, 0, 1, 5, 1, 8, 5, 5, 1, 5, 11, 5, 1, 5, 1, 5, 5, 20, 3, 5, 1, 0, 25, 26, 9, 5, 25, 5, 1, 26, 25, 10, 1, 5, 25, 8, 25, 5, 1, 5, 9, 35, 25, 5, 1, 19, 25, 23, 1, 5, 1, 45, 25, 11, 25, 5, 25, 5, 25, 62, 1, 5, 49, 5, 13, 56, 65, 5, 1, 5, 25, 50, 17, 3, 25, 5, 65, 80, 25, 5, 1, 65
Offset: 1

Views

Author

Amarnath Murthy, Dec 22 2001

Keywords

Examples

			a(7) = 5 as 5^7 = 78125 = 7*11160 + 5.
		

Crossrefs

Cf. k^n mod n: A015910 (k=2), A066601 (k=3), A066602 (k=4), this sequence (k=5), A066604 (k=6), A066438 (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), A066441 (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(5^n,n),n=1..85); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[5, n, n], {n, 85} ]
  • PARI
    a(n) = { lift(Mod(5, n)^n) } \\ Harry J. Smith, Mar 09 2010

Extensions

More terms from Robert G. Wilson v, Dec 27 2001
Previous Showing 11-20 of 64 results. Next