cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A119678 a(n) is the least k such that 4^k mod k = n.

Original entry on oeis.org

3, 14, 137243, 5, 6821, 10, 57, 124, 35, 18, 2791496231, 244, 51, 505, 199534799, 20, 30271293169, 49, 45, 236, 399531841, 42, 533, 25, 39, 50, 352957, 36, 995, 98, 33, 112, 47503, 55, 42345881, 44, 2981, 289, 805, 78, 1019971289, 25498, 2121, 212
Offset: 1

Views

Author

Ryan Propper, Jun 12 2006

Keywords

Comments

a(n) > n.
Numbers n > 1 such that a(n-1) = n are listed in A015950.
a(87) > 10^14.
a(11) <= 2791496231, a(17) <= 140631956671, a(53) <= 52134328061 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 10 2007

Crossrefs

Programs

  • Mathematica
    Do[k = 1; While[PowerMod[4, k, k] != n, k++ ]; Print[k], {n, 30}]
    t = Table[0, {10000} ]; k = 1; While[ k < 5000000000, a = PowerMod[4, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* search limits expanded by Robert G. Wilson v, Jul 14 2009 *)
  • Python
    def a(n):
      k = 1
      while 4**k % k != n: k += 1
      return k
    print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Mar 14 2021

Formula

a(5^k-1) = 5^k.

Extensions

a(11) = 2791496231 from Robert G. Wilson v, Feb 11 2007; confirmed by Ryan Propper, Feb 15 2007
Link corrected by R. J. Mathar, Jul 24 2009
a(83) = 3085807457009 = 113 * 331 * 82501603 from Hagen von Eitzen, Jul 27 2009

A015949 Numbers k such that k | 3^k + 1.

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 5050, 6250, 11810, 25250, 31250, 59050, 126250, 156250, 295250, 510050, 631250, 750250, 781250, 1476250, 2125250, 2550250, 3156250, 3751250, 3906250, 5964050, 7381250, 10626250, 12751250, 13947610, 15781250
Offset: 1

Views

Author

Keywords

Comments

a(n) mod 20 = 10 for n >= 3. - G. C. Greubel, Nov 05 2018
This sequence is infinite, because for n > 1, 3^a(n) + 1 is in this sequence. - Jinyuan Wang, Nov 06 2018
For the provided data, if k is a term then p*k is a term where p is an odd divisor of k. - David A. Corneth, Nov 06 2018

Crossrefs

Cf. A034472 (3^n+1).
Cf. A006521 (k | 2^k + 1), A015950 (k | 4^k + 1), A015951 (k | 5^k + 1).
Column k=3 of A333429.

Programs

  • Magma
    [n: n in [1..2*10^7]| Modexp(3, n, n)+1 eq n]; // Vincenzo Librandi, Nov 01 2018
  • Mathematica
    Do[If[PowerMod[3, n, n] + 1 == n, Print[n]], {n, 1, 10^7}] (* Jinyuan Wang, Nov 01 2018 *)
    Select[Range[16*10^6],PowerMod[3,#,#]==#-1&] (* Harvey P. Dale, Dec 15 2024 *)
  • PARI
    for(n=1, 10^7, if(Mod(3, n)^n==-1, print1(n, ", "))) \\ Jinyuan Wang, Nov 01 2018
    

Extensions

Corrected by David W. Wilson

A333429 A(n,k) is the n-th number m that divides k^m + 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 1, 2, 9, 0, 1, 5, 10, 27, 0, 1, 2, 25, 50, 81, 0, 1, 7, 3, 125, 250, 171, 0, 1, 2, 49, 9, 205, 1250, 243, 0, 1, 3, 10, 203, 21, 625, 5050, 513, 0, 1, 2, 9, 50, 343, 26, 1025, 6250, 729, 0, 1, 11, 5, 27, 250, 1379, 27, 2525, 11810, 1539, 0
Offset: 1

Views

Author

Alois P. Heinz, Mar 20 2020

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,     1,    1,   1,    1,     1,   1,    1,     1, ...
  2,    3,     2,    5,   2,    7,     2,   3,    2,    11, ...
  0,    9,    10,   25,   3,   49,    10,   9,    5,   121, ...
  0,   27,    50,  125,   9,  203,    50,  27,   25,   253, ...
  0,   81,   250,  205,  21,  343,   250,  57,   82,  1331, ...
  0,  171,  1250,  625,  26, 1379,  1250,  81,  125,  2783, ...
  0,  243,  5050, 1025,  27, 1421,  2810, 171,  625,  5819, ...
  0,  513,  6250, 2525,  63, 2401,  5050, 243, 2525, 11891, ...
  0,  729, 11810, 3125,  81, 5887,  6250, 513, 3125, 14641, ...
  0, 1539, 25250, 5125, 147, 9653, 14050, 729, 3362, 30613, ...
		

Crossrefs

Rows n=1-2 give: A000012, A092067.
Main diagonal gives A333430.
Cf. A333432.

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=1 then `if`(n<3, n, 0) else
            while nops(p(k)) 0 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    dmax = 12;
    mmax = 2^(dmax+3);
    col[k_] := col[k] = Select[Range[mmax], Divisible[k^#+1, #]&];
    A[n_, k_] := If[n>2 && k==1, 0, col[k][[n]]];
    Table[A[n, d-n+1], {d, 1, dmax}, {n, 1, d}] // Flatten (* Jean-François Alcover, Jan 05 2021 *)

A015954 Numbers k such that k | 7^k + 1.

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 2810, 5050, 6250, 14050, 25250, 31250, 40210, 70250, 126250, 156250, 201050, 351250, 510050, 631250, 650050, 781250, 789610, 1005250, 1265050, 1419050, 1756250, 2550250, 3156250, 3250250, 3906250, 3948050, 5026250, 6325250, 7095250, 8781250, 9478130
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), this sequence (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=7 of A333429.

A015960 Numbers k such that k | 11^k + 1.

Original entry on oeis.org

1, 2, 3, 9, 27, 81, 111, 122, 243, 333, 729, 999, 2187, 2997, 4107, 6561, 7442, 8991, 10233, 12321, 13203, 19683, 24753, 26973, 30699, 36963, 39609, 59049, 74259, 80919, 89426, 92097, 110889, 118341, 118827, 151959, 177147, 222777
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), this sequence (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Cf. A333134.
Column k=11 of A333429.

Programs

  • Mathematica
    Select[Range[250000],PowerMod[11,#,#]==#-1&] (* Harvey P. Dale, Nov 09 2022 *)

A015953 Numbers k such that k | 6^k + 1.

Original entry on oeis.org

1, 7, 49, 203, 343, 1379, 1421, 2401, 5887, 9653, 9947, 11977, 16807, 39991, 41209, 67571, 69629, 83839, 117649, 170723, 271663, 279937, 288463, 347333, 472997, 487403, 586873, 706643, 823543, 1159739, 1195061, 1901641, 1959559, 2019241, 2359469, 2431331
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), this sequence (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=6 of A333429.

Programs

  • Mathematica
    Select[Range[2000000],PowerMod[6,#,#]==#-1&] (* Harvey P. Dale, Aug 28 2012 *)

A015955 Numbers k such that k | 8^k + 1.

Original entry on oeis.org

1, 3, 9, 27, 57, 81, 171, 243, 513, 729, 1083, 1539, 2187, 3249, 4401, 4617, 6561, 9747, 13203, 13851, 19683, 20577, 29241, 32547, 39609, 41553, 59049, 61731, 83619, 87723, 97641, 118179, 118827, 124659, 177147, 185193, 250857, 263169
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), this sequence (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=8 of A333429.

A015957 Numbers k such that k | 9^k + 1.

Original entry on oeis.org

1, 2, 5, 25, 82, 125, 625, 2525, 3125, 3362, 5905, 12625, 15625, 29525, 63125, 78125, 137842, 147625, 188354, 255025, 315625, 375125, 390625, 738125, 1062625, 1275125, 1578125, 1875625, 1953125, 2982025, 3690625, 5313125, 5651522, 6375625, 6973805
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), this sequence (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=9 of A333429.

Programs

  • Mathematica
    Select[Range[7*10^6],PowerMod[9,#,#]==#-1&] (* Harvey P. Dale, Apr 21 2024 *)

Extensions

More terms from David W. Wilson

A015958 Numbers k such that k | 10^k + 1.

Original entry on oeis.org

1, 11, 121, 253, 1331, 2783, 5819, 11891, 14641, 30613, 35167, 45023, 64009, 96569, 130801, 133837, 161051, 273493, 336743, 386837, 495253, 527197, 558877, 640343, 704099, 808841, 1035529, 1062259, 1438811, 1472207, 1652849, 1771561, 2221087, 3008423, 3045449
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), this sequence (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=10 of A333429.

Programs

  • Mathematica
    Select[Range[15*10^5],PowerMod[10,#,#]==#-1&] (* Harvey P. Dale, Oct 01 2017 *)

Extensions

Corrected by T. D. Noe, Oct 31 2006

A015961 Positive integers k such that k | (12^k + 1).

Original entry on oeis.org

1, 13, 169, 1027, 2197, 13351, 28561, 81133, 173563, 371293, 468481, 685633, 1054729, 2256319, 2890927, 4826809, 6090253, 6409507, 8913229, 13711477, 29332147, 37009999, 37582051, 54165007, 62748517, 79173289, 83323591, 115871977, 178249201, 228383233
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), this sequence (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=12 of A333429.

Extensions

More terms from Max Alekseyev, Aug 01 2011
a(30) from Jon E. Schoenfield, Aug 27 2021
Showing 1-10 of 17 results. Next