A209722
1/4 the number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.
Original entry on oeis.org
4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 66, 98, 130, 194, 258, 386, 514, 770, 1026, 1538, 2050, 3074, 4098, 6146, 8194, 12290, 16386, 24578, 32770, 49154, 65538, 98306, 131074, 196610, 262146, 393218, 524290, 786434, 1048578, 1572866, 2097154, 3145730
Offset: 1
Some solutions for n=4:
..2..1..2..1....2..1..2..1....1..2..1..2....1..0..2..0....2..1..2..1
..0..2..0..2....0..2..0..2....2..0..2..0....0..2..1..2....0..2..0..2
..2..1..2..1....1..0..1..0....0..1..0..1....1..0..2..0....1..0..1..0
..0..2..0..2....0..2..0..2....2..0..2..0....0..2..1..2....0..2..0..2
..2..1..2..1....2..1..2..1....0..1..0..1....1..0..2..0....1..0..1..0
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent:
A029744 (s(n));
A052955 (s(n)-1),
A027383 (s(n)-2),
A354788 (s(n)-3),
A347789 (s(n)-4),
A209721 (s(n)+1),
A209722 (s(n)+2),
A343177 (s(n)+3),
A209723 (s(n)+4);
A060482,
A136252 (minor differences from
A354788 at the start);
A354785 (3*s(n)),
A354789 (3*s(n)-7). The first differences of
A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences:
A016116,
A060546,
A117575,
A131572,
A152166,
A158780,
A163403,
A320770. The bisections of
A029744 are
A000079 and
A007283. -
N. J. A. Sloane, Jul 14 2022
A209723
1/4 the number of (n+1) X 5 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.
Original entry on oeis.org
6, 7, 8, 10, 12, 16, 20, 28, 36, 52, 68, 100, 132, 196, 260, 388, 516, 772, 1028, 1540, 2052, 3076, 4100, 6148, 8196, 12292, 16388, 24580, 32772, 49156, 65540, 98308, 131076, 196612, 262148, 393220, 524292, 786436, 1048580, 1572868, 2097156
Offset: 1
Some solutions for n=4:
..2..1..2..0..2....0..2..0..1..0....0..1..0..1..0....0..1..0..1..0
..0..2..0..1..0....2..1..2..0..2....2..0..2..0..2....2..0..2..0..2
..2..1..2..0..2....0..2..0..1..0....0..1..0..1..0....0..1..0..1..0
..0..2..0..1..0....2..1..2..0..2....2..0..2..0..2....2..0..2..0..2
..2..1..2..0..2....0..2..0..1..0....1..2..1..2..1....0..1..0..1..0
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent:
A029744 (s(n));
A052955 (s(n)-1),
A027383 (s(n)-2),
A354788 (s(n)-3),
A347789 (s(n)-4),
A209721 (s(n)+1),
A209722 (s(n)+2),
A343177 (s(n)+3),
A209723 (s(n)+4);
A060482,
A136252 (minor differences from
A354788 at the start);
A354785 (3*s(n)),
A354789 (3*s(n)-7). The first differences of
A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences:
A016116,
A060546,
A117575,
A131572,
A152166,
A158780,
A163403,
A320770. The bisections of
A029744 are
A000079 and
A007283. -
N. J. A. Sloane, Jul 14 2022
A320770
a(n) = (-1)^floor(n/4) * 2^floor(n/2).
Original entry on oeis.org
1, 1, 2, 2, -4, -4, -8, -8, 16, 16, 32, 32, -64, -64, -128, -128, 256, 256, 512, 512, -1024, -1024, -2048, -2048, 4096, 4096, 8192, 8192, -16384, -16384, -32768, -32768, 65536, 65536, 131072, 131072, -262144, -262144, -524288, -524288, 1048576, 1048576
Offset: 0
G.f. = 1 + x + 2*x^2 + 2*x^3 - 4*x^4 - 4*x^5 - 8*x^6 - 8*x^7 + ...
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent:
A029744 (s(n));
A052955 (s(n)-1),
A027383 (s(n)-2),
A354788 (s(n)-3),
A347789 (s(n)-4),
A209721 (s(n)+1),
A209722 (s(n)+2),
A343177 (s(n)+3),
A209723 (s(n)+4);
A060482,
A136252 (minor differences from
A354788 at the start);
A354785 (3*s(n)),
A354789 (3*s(n)-7). The first differences of
A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences:
A016116,
A060546,
A117575,
A131572,
A152166,
A158780,
A163403,
A320770. The bisections of
A029744 are
A000079 and
A007283. -
N. J. A. Sloane, Jul 14 2022
-
[(-1)^Floor(n/4)* 2^Floor(n/2): n in [0..50]]; // G. C. Greubel, Oct 27 2018
-
a[ n_] := (-1)^Quotient[n, 4] * 2^Quotient[n, 2];
-
{a(n) = (-1)^floor(n/4) * 2^floor(n/2)};
-
def A320770(n): return -(1<<(n>>1)) if n&4 else 1<<(n>>1) # Chai Wah Wu, Jan 18 2023
A343177
a(0)=4; if n > 0 is even then a(n) = 2^(n/2+1)+3, otherwise a(n) = 3*(2^((n-1)/2)+1).
Original entry on oeis.org
4, 6, 7, 9, 11, 15, 19, 27, 35, 51, 67, 99, 131, 195, 259, 387, 515, 771, 1027, 1539, 2051, 3075, 4099, 6147, 8195, 12291, 16387, 24579, 32771, 49155, 65539, 98307, 131075, 196611, 262147, 393219, 524291, 786435, 1048579, 1572867, 2097155, 3145731, 4194307, 6291459
Offset: 0
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent:
A029744 (s(n));
A052955 (s(n)-1),
A027383 (s(n)-2),
A354788 (s(n)-3),
A347789 (s(n)-4),
A209721 (s(n)+1),
A209722 (s(n)+2),
A343177 (s(n)+3),
A209723 (s(n)+4);
A060482,
A136252 (minor differences from
A354788 at the start);
A354785 (3*s(n)),
A354789 (3*s(n)-7). The first differences of
A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences:
A016116,
A060546,
A117575,
A131572,
A152166,
A158780,
A163403,
A320770. The bisections of
A029744 are
A000079 and
A007283. -
N. J. A. Sloane, Jul 14 2022
-
f:=n->if n = 0 then 4 elif (n mod 2) = 0 then 2^(n/2+1)+3 else 3*(2^((n-1)/2)+1); fi;
[seq(f(n),n=0..40)];
-
LinearRecurrence[{1, 2, -2}, {4, 6, 7, 9}, 50] (* or *)
A343177[n_] := Which[n == 0, 4, OddQ[n], 3*(2^((n-1)/2)+1), True, 2^(n/2+1)+3];
Array[A343177, 50, 0] (* Paolo Xausa, Feb 02 2024 *)
A347043
Smallest divisor of n with half (rounded up) as many prime factors (counting multiplicity) as n.
Original entry on oeis.org
1, 2, 3, 2, 5, 2, 7, 4, 3, 2, 11, 4, 13, 2, 3, 4, 17, 6, 19, 4, 3, 2, 23, 4, 5, 2, 9, 4, 29, 6, 31, 8, 3, 2, 5, 4, 37, 2, 3, 4, 41, 6, 43, 4, 9, 2, 47, 8, 7, 10, 3, 4, 53, 6, 5, 4, 3, 2, 59, 4, 61, 2, 9, 8, 5, 6, 67, 4, 3, 10, 71, 8, 73, 2, 15, 4, 7, 6, 79, 8
Offset: 1
The divisors of 123456 with half bigomega are: 16, 24, 5144, 7716, so a(123456) = 16.
Positions of odd terms are
A005408.
Positions of even terms are
A005843.
The case of powers of 2 is
A016116.
The smallest divisor without the condition is
A020639 (greatest:
A006530).
A001221 counts distinct prime factors.
A001222 counts all prime factors (also called bigomega).
A340387 lists numbers whose sum of prime indices is twice bigomega.
A340609 lists numbers whose maximum prime index divides bigomega.
A340610 lists numbers whose maximum prime index is divisible by bigomega.
A347042 counts divisors d|n such that bigomega(d) divides bigomega(n).
-
Table[Min[Select[Divisors[n],PrimeOmega[#]==Ceiling[PrimeOmega[n]/2]&]],{n,100}]
a[n_] := Module[{p = Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]}, Times @@ p[[1 ;; Ceiling[Length[p]/2]]]]; Array[a, 100] (* Amiram Eldar, Nov 02 2024 *)
-
a(n) = my(bn=ceil(bigomega(n)/2)); fordiv(n, d, if (bigomega(d)==bn, return (d))); \\ Michel Marcus, Aug 18 2021
-
from sympy import divisors, factorint
def a(n):
npf = len(factorint(n, multiple=True))
for d in divisors(n):
if len(factorint(d, multiple=True)) == (npf+1)//2: return d
return 1
print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Aug 18 2021
-
from math import prod
from sympy import factorint
def A347043(n):
fs = factorint(n,multiple=True)
l = len(fs)
return prod(fs[:(l+1)//2]) # Chai Wah Wu, Aug 20 2021
A354785
Numbers of the form 3*2^k or 9*2^k.
Original entry on oeis.org
3, 6, 9, 12, 18, 24, 36, 48, 72, 96, 144, 192, 288, 384, 576, 768, 1152, 1536, 2304, 3072, 4608, 6144, 9216, 12288, 18432, 24576, 36864, 49152, 73728, 98304, 147456, 196608, 294912, 393216, 589824, 786432, 1179648, 1572864, 2359296, 3145728, 4718592, 6291456, 9437184, 12582912, 18874368, 25165824, 37748736, 50331648
Offset: 1
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent:
A029744 (s(n));
A052955 (s(n)-1),
A027383 (s(n)-2),
A354788 (s(n)-3),
A347789 (s(n)-4),
A209721 (s(n)+1),
A209722 (s(n)+2),
A343177 (s(n)+3),
A209723 (s(n)+4);
A060482,
A136252 (minor differences from
A354788 at the start);
A354785 (3*s(n)),
A354789 (3*s(n)-7). The first differences of
A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences:
A016116,
A060546,
A117575,
A131572,
A152166,
A158780,
A163403,
A320770. The bisections of
A029744 are
A000079 and
A007283.
-
seq[max_] := Union[Table[3*2^n, {n, 0, Floor[Log2[max/3]]}], Table[9*2^n, {n, 0, Floor[Log2[max/9]]}]]; seq[10^8] (* Amiram Eldar, Jan 16 2024 *)
A357643
Number of integer compositions of n into parts that are alternately equal and unequal.
Original entry on oeis.org
1, 1, 2, 1, 3, 3, 5, 5, 9, 7, 17, 14, 28, 25, 49, 42, 87, 75, 150, 132, 266, 226, 466, 399, 810, 704, 1421, 1223, 2488, 2143, 4352, 3759, 7621, 6564, 13339, 11495, 23339, 20135, 40852, 35215, 71512, 61639, 125148, 107912, 219040, 188839, 383391, 330515, 670998
Offset: 0
The a(1) = 1 through a(8) = 9 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (22) (113) (33) (115) (44)
(112) (221) (114) (223) (116)
(1122) (331) (224)
(2211) (11221) (332)
(1133)
(3311)
(22112)
(112211)
Without equal relations we have
A016116, equal only
A001590 (apparently).
The version for partitions is
A351005.
A357621 gives half-alternating sum of standard compositions, skew
A357623.
Cf.
A029862,
A035544,
A097805,
A122129,
A122134,
A122135,
A351003,
A351004,
A351007,
A357136,
A357641.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,15}]
-
C_x(N) = {my(x='x+O('x^N), h=(1+sum(k=1,N, (x^k)/(1+x^(2*k))))/(1-sum(k=1,N, (x^(2*k))/(1+x^(2*k))))); Vec(h)}
C_x(50) \\ John Tyler Rascoe, May 28 2024
A152198
Triangle read by rows, A007318 rows repeated.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1
Offset: 0
The triangle starts
1;
1;
1, 1;
1, 1;
1, 2, 1;
1, 2, 1;
1, 3, 3, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
1, 4, 6, 4, 1;
1, 5, 10, 10, 5, 1;
1, 5, 10, 10, 5, 1;
...
Triangle (1,0,-1,0,0,...) DELTA (0,1,-1,0,0,...) begins:
1
1, 0
1, 1, 0
1, 1, 0, 0
1, 2, 1, 0, 0
1, 2, 1, 0, 0, 0
1, 3, 3, 1, 0, 0, 0
1, 3, 3, 1, 0, 0, 0, 0
1, 4, 6, 4, 1, 0, 0, 0, 0
1, 4, 6, 4, 1, 0, 0, 0, 0, 0
1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0...
-
t[n_, k_] := Binomial[ Floor[n/2], k]; Table[t[n, k], {n, 0, 17}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Sep 13 2012 *)
A178381
Number of paths of length n starting at initial node of the path graph P_9.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 20, 35, 70, 125, 250, 450, 900, 1625, 3250, 5875, 11750, 21250, 42500, 76875, 153750, 278125, 556250, 1006250, 2012500, 3640625, 7281250, 13171875, 26343750, 47656250, 95312500, 172421875, 344843750
Offset: 0
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
- Nachum Dershowitz, Between Broadway and the Hudson, arXiv:2006.06516 [math.CO], 2020.
- Eric Weisstein's World of Mathematics, Trigonometric Identities.
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-5).
Cf.
A000007 (P_1),
A000012 (P_2),
A016116 (P_3),
A000045 (P_4),
A038754 (P_5),
A028495 (P_6),
A030436 (P_7),
A061551 (P_8), this sequence (P_9),
A336675 (P_10),
A336678 (P_11), and
A001405 (P_infinity).
Cf.
A216212 (P_9 starting in the middle).
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4))); // G. C. Greubel, Sep 18 2018
-
with(GraphTheory): P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=36; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P); od: seq(a(n),n=0..nmax);
r := j -> (-1)^(j/10) - (-1)^(1-j/10):
a := k -> add((2 + r(j))*r(j)^k, j in [1, 3, 5, 7, 9])/10:
seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 18 2020
-
CoefficientList[Series[(1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4), {x,0,50}], x] (* G. C. Greubel, Sep 18 2018 *)
-
x='x+O('x^50); Vec((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4)) \\ G. C. Greubel, Sep 18 2018
A050683
Number of nonzero palindromes of length n.
Original entry on oeis.org
9, 9, 90, 90, 900, 900, 9000, 9000, 90000, 90000, 900000, 900000, 9000000, 9000000, 90000000, 90000000, 900000000, 900000000, 9000000000, 9000000000, 90000000000, 90000000000, 900000000000, 900000000000, 9000000000000
Offset: 1
Cf.
A016116 for numbers of binary palindromes,
A016115 for prime palindromes.
-
a:=[9,9];; for n in [3..30] do a[n]:=10*a[n-2]; od; a; # Muniru A Asiru, Oct 07 2018
-
[9*10^Floor((n-1)/2): n in [1..30]]; // Vincenzo Librandi, Aug 16 2011
-
seq(9*10^floor((n-1)/2),n=1..30); # Muniru A Asiru, Oct 07 2018
-
With[{c=9*10^Range[0,20]},Riffle[c,c]] (* or *) LinearRecurrence[{0,10},{9,9},40] (* Harvey P. Dale, Dec 15 2013 *)
-
A050683(n)=9*10^((n-1)\2) \\ M. F. Hasler, Nov 16 2008
-
\\ using M. F. Hasler's is_A002113(n) from A002113
is_A002113(n)={Vecrev(n=digits(n))==n}
for(n=1,8,j=0;for(k=10^(n-1),10^n-1,if(is_A002113(k),j++));print1(j,", ")) \\ Hugo Pfoertner, Oct 03 2018
-
is_palindrome(x)={my(d=digits(x));for(k=1,#d\2,if(d[k]!=d[#d+1-k],return(0)));return(1)}
for(n=1,8,j=0;for(k=10^(n-1),10^n-1,if(is_palindrome(k),j++));print1(j,", ")) \\ Hugo Pfoertner, Oct 02 2018
-
a(n) = if(n<3, 9, 10*a(n-2)); \\ Altug Alkan, Oct 03 2018
-
def A050683(n): return 9*10**(n-1>>1) # Chai Wah Wu, Jul 30 2025
Comments