cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A134491 a(n) = Fibonacci(5n+4).

Original entry on oeis.org

3, 34, 377, 4181, 46368, 514229, 5702887, 63245986, 701408733, 7778742049, 86267571272, 956722026041, 10610209857723, 117669030460994, 1304969544928657, 14472334024676221, 160500643816367088
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: ( -3-x ) / ( -1+11*x+x^2 ). - R. J. Mathar, Apr 17 2011
a(n) = A000045(A016897(n)). - Michel Marcus, Nov 07 2013

A154684 Triangle read by rows where T(m,n)=2mn + m + n - 3, 1<=n<=m.

Original entry on oeis.org

1, 4, 9, 7, 14, 21, 10, 19, 28, 37, 13, 24, 35, 46, 57, 16, 29, 42, 55, 68, 81, 19, 34, 49, 64, 79, 94, 109, 22, 39, 56, 73, 90, 107, 124, 141, 25, 44, 63, 82, 101, 120, 139, 158, 177, 28, 49, 70, 91, 112, 133, 154, 175, 196, 217, 31, 54, 77, 100, 123, 146, 169
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

2*T(m,n)+7 = (2n+1)*(2m+1) is not prime.
First column: A016777; second column: A016897; third column: A008589; fourth column: A017173. - Vincenzo Librandi, Nov 19 2012

Examples

			Triangle begins:
1;
4,  9;
7,  14, 21;
10, 19, 28, 37;
13, 24, 35, 46, 57;
16, 29, 42, 55, 68,  81;
19, 34, 49, 64, 79,  94,  109;
22, 39, 56, 73, 90,  107, 124, 141;
25, 44, 63, 82, 101, 120, 139, 158, 177;
28, 49, 70, 91, 112, 133, 154, 175, 196, 217; etc.
		

Crossrefs

Programs

  • Magma
    [(2*n*k + n + k - 3): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 19 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k - 3; Table[t[n, k], {n, 20}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 19 2012 *)

A163672 Triangle T(n,m) = 2mn + m + n + 7 read by rows.

Original entry on oeis.org

11, 14, 19, 17, 24, 31, 20, 29, 38, 47, 23, 34, 45, 56, 67, 26, 39, 52, 65, 78, 91, 29, 44, 59, 74, 89, 104, 119, 32, 49, 66, 83, 100, 117, 134, 151, 35, 54, 73, 92, 111, 130, 149, 168, 187, 38, 59, 80, 101, 122, 143, 164, 185, 206, 227, 41, 64, 87, 110, 133, 156, 179
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2009

Keywords

Comments

2*T(n,n) - 13 = (2n+1)^2.
The numbers 2*T(m,n)-13 =(2*n+1)*(2*m+1) are not prime. Also: first column: A016789; second column: A016897; third column: A017017; fourth column: A017185. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
  11;
  14,  19;
  17,  24,  31;
  20,  29,  38,  47;
  23,  34,  45,  56,  67;
  26,  39,  52,  65,  78,  91;
  29,  44,  59,  74,  89, 104, 119;
  32,  49,  66,  83, 100, 117, 134, 151;
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 7: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
    
  • Mathematica
    t[n_,k_]:=2 n*k + n + k + 7; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(2*m*n + m + n + 7, ", "))) \\ G. C. Greubel, Aug 02 2017

Formula

T(n,m) = A163674(n,m)-2 = A163657(n,m)-1.

Extensions

Edited by R. J. Mathar, Oct 12 2009

A327753 Primes powers (A246655) congruent to 4 mod 5.

Original entry on oeis.org

4, 9, 19, 29, 49, 59, 64, 79, 89, 109, 139, 149, 169, 179, 199, 229, 239, 269, 289, 349, 359, 379, 389, 409, 419, 439, 449, 479, 499, 509, 529, 569, 599, 619, 659, 709, 719, 729, 739, 769, 809, 829, 839, 859, 919, 929, 1009, 1019, 1024, 1039, 1049, 1069, 1109, 1129, 1229, 1249
Offset: 1

Views

Author

Jianing Song, Sep 24 2019

Keywords

Comments

Numbers k such that x^4 + x^3 + x^2 + x + 1 factors into two irreducible quadratic polynomials over GF(k).
Note that x^4 + x^3 + x^2 + x + 1 is reducible over GF(k) if and only if there exists some a in GF(k) such that a^2 - a - 1 = 0, and then x^4 + x^3 + x^2 + x + 1 = (x^2 + a*x + 1) * (x^2 + (1-a)*x + 1). There exists some a in GF(k) such that a^2 - a - 1 = 0 if and only if kronecker(k,5) = 1, or k == 1, 4 (mod 5). If k == 1 (mod 5), then x^4 + x^3 + x^2 + x + 1 can be further factored into four linear polynomials.
This sequence consists of numbers of the form p^(2e+1) where prime p == 4 (mod 5) and p^(4e+2) where prime p == 2, 3 (mod 5),

Examples

			k = 4: let GF(4) = GF(2)[w], w^2 + w + 1 = 0, then x^4 + x^3 + x^2 + x + 1 = (x^2 + w*x + 1)*(x^2 + (w+1)*x + 1);
k = 9: let GF(9) = GF(3)[i], i^2 = -1, then x^4 + x^3 + x^2 + x + 1 = (x^2 + (-1+i)*x + 1)*(x^2 + (-1-i)*x + 1);
k = 19: in GF(19), x^4 + x^3 + x^2 + x + 1 = (x^2 + 5x + 1)*(x^2 - 4x + 1).
		

Crossrefs

Intersection of A016897 and A246655.

Programs

  • Magma
    [n:n in [2..1250]|IsPrimePower(n) and (n mod 5 eq 4)]; // Marius A. Burtea, Sep 26 2019
  • Mathematica
    Select[Range@ 1250, And[PrimePowerQ@ #, Mod[#, 5] == 4] &] (* Michael De Vlieger, Sep 27 2019 *)
  • PARI
    isok(n) = isprimepower(n) && (n%5==4)
    

A013825 a(n) = 2^(5*n + 4).

Original entry on oeis.org

16, 512, 16384, 524288, 16777216, 536870912, 17179869184, 549755813888, 17592186044416, 562949953421312, 18014398509481984, 576460752303423488, 18446744073709551616, 590295810358705651712, 18889465931478580854784, 604462909807314587353088, 19342813113834066795298816
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000079 (2^n), A009976, A016897 (5*n+4).

Programs

  • Magma
    [2^(5*n+4): n in [0..15]]; // Vincenzo Librandi, Jul 07 2011
  • Mathematica
    2^(5*Range[0, 20] + 4) (* or *) NestList[32#&,16,20] (* Harvey P. Dale, Sep 27 2015 *)

Formula

From Philippe Deléham, Nov 24 2008: (Start)
a(n) = 32*a(n-1), n > 0; a(0)=16.
G.f.: 16/(1-32*x).
a(n) = 16*A009976(n). (End)
From Elmo R. Oliveira, Feb 20 2025: (Start)
E.g.f.: 16*exp(32*x).
a(n) = A000079(A016897(n)). (End)

A155705 Triangle read by rows where T(m,n) = 2*m*n + m + n + 2.

Original entry on oeis.org

6, 9, 14, 12, 19, 26, 15, 24, 33, 42, 18, 29, 40, 51, 62, 21, 34, 47, 60, 73, 86, 24, 39, 54, 69, 84, 99, 114, 27, 44, 61, 78, 95, 112, 129, 146, 30, 49, 68, 87, 106, 125, 144, 163, 182, 33, 54, 75, 96, 117, 138, 159, 180, 201, 222, 36, 59, 82, 105, 128, 151
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Comments

2*T(m,n)-3 = (2*m+1)*(2*n+1) is not prime, obviously. Also: first column: 3*A020725; second column: A016897; third column: A017041; fourth column: 3*A016789. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
6;
9,  14;
12, 19, 26;
15, 24, 33, 42;
18, 29, 40, 51, 62;
21, 34, 47, 60, 73,  86;
24, 39, 54, 69, 84,  99,  114;
27, 44, 61, 78, 95,  112, 129, 146;
30, 49, 68, 87, 106, 125, 144, 163, 182;
33, 54, 75, 96, 117, 138, 159, 180, 201, 222; etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 2: k in [1..n],  n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k + 2; Table[t[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

A182719 Numbers of the form 5k + 4, 7k + 5, or 11k + 6.

Original entry on oeis.org

4, 5, 6, 9, 12, 14, 17, 19, 24, 26, 28, 29, 33, 34, 39, 40, 44, 47, 49, 50, 54, 59, 61, 64, 68, 69, 72, 74, 75, 79, 82, 83, 84, 89, 94, 96, 99, 103, 104, 105, 109, 110, 114, 116, 117, 119, 124, 127, 129, 131, 134, 138, 139, 144, 145, 149, 152, 154, 159, 160, 164
Offset: 1

Views

Author

Omar E. Pol, Feb 08 2011

Keywords

Comments

Numbers such that the Ramanujan congruences apply, making p(a(n)) divisible by at least one of 5, 7, or 11, where p is A000041.
Union of A016897, A017041 and A017461.
First differences are periodic with period length 145.

Crossrefs

Programs

  • Magma
    IsA182719:=func< n | exists{ k: k in [0..n div 5] | n in [5*k+4, 7*k+5, 11*k+6] } >; [ n: n in [1..160] | IsA182719(n) ]; // Klaus Brockhaus, Feb 08 2011
  • Mathematica
    Union[With[{no=30},Join[5Range[0,no]+4,7Range[0,no]+5,11Range[0,no]+6]]]  (* Harvey P. Dale, Feb 18 2011 *)

Formula

a(n) = a(n-145) + 385 = a(n-1) + a(n-145) - a(n-146).

Extensions

Rewritten by Charles R Greathouse IV and Klaus Brockhaus, Feb 08 2011

A220485 spt(5n+4) where spt(n) = A092269(n).

Original entry on oeis.org

10, 80, 440, 1820, 6545, 20630, 59960, 161840, 412950, 1002435, 2335760, 5246120, 11416820, 24146510, 49795175, 100348950, 198063060, 383516700, 729726660, 1366124700, 2519441030, 4581865140, 8224627160, 14584074770, 25565740130, 44334556890, 76102268520
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Comments

a(n) is divisible by 5 (see A220505).

Crossrefs

Formula

a(n) = A092269(A016897(n)).

A220505 a(n) = spt(5n+4)/5 where spt(n) = A092269(n).

Original entry on oeis.org

2, 16, 88, 364, 1309, 4126, 11992, 32368, 82590, 200487, 467152, 1049224, 2283364, 4829302, 9959035, 20069790, 39612612, 76703340, 145945332, 273224940, 503888206, 916373028, 1644925432, 2916814954, 5113148026, 8866911378, 15220453704
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Comments

That spt(5n+4) == 0 (mod 5) is one of the congruences stated by George E. Andrews. See theorem 2 in the Andrews' paper. See also A220507 and A220513.

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i j, i - 1], {j, 0, n/i}]];
    spt[n_] := b[n, n];
    a[n_] := spt[5n+4]/5;
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jan 30 2019, after Alois P. Heinz in A092269 *)

Formula

a(n) = A092269(A016897(n))/5 = A220485(n)/5.

A339087 Number of compositions (ordered partitions) of n into distinct parts congruent to 4 mod 5.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 4, 1, 0, 0, 6, 4, 1, 0, 0, 6, 6, 1, 0, 0, 12, 6, 1, 0, 0, 18, 8, 1, 0, 24, 24, 8, 1, 0, 24, 30, 10, 1, 0, 48, 42, 10, 1, 0, 72, 48, 12, 1, 0, 120, 60, 12, 1, 120, 144, 72, 14, 1, 120, 216, 84, 14, 1, 240
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2020

Keywords

Examples

			a(27) = 6 because we have [14, 9, 4], [14, 4, 9], [9, 14, 4], [9, 4, 14], [4, 14, 9] and [4, 9, 14].
		

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[k! x^(k (5 k + 3)/2)/Product[1 - x^(5 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(5*k + 3)/2) / Product_{j=1..k} (1 - x^(5*j)).
Previous Showing 21-30 of 45 results. Next