A016936
a(n) = (6*n + 2)^4.
Original entry on oeis.org
16, 4096, 38416, 160000, 456976, 1048576, 2085136, 3748096, 6250000, 9834496, 14776336, 21381376, 29986576, 40960000, 54700816, 71639296, 92236816, 116985856, 146410000, 181063936, 221533456, 268435456, 322417936, 384160000, 454371856, 533794816, 623201296
Offset: 0
-
[(6*n+2)^4: n in [0..30]]; // Vincenzo Librandi, May 04 2011
-
(6*Range[0,30]+2)^4 (* or *) LinearRecurrence[{5,-10,10,-5,1},{16,4096,38416,160000,456976},30] (* Harvey P. Dale, Aug 22 2012 *)
A138750
a(n) = ceiling(n/2) if n == 2 (mod 3), a(n) = 2n otherwise.
Original entry on oeis.org
0, 2, 1, 6, 8, 3, 12, 14, 4, 18, 20, 6, 24, 26, 7, 30, 32, 9, 36, 38, 10, 42, 44, 12, 48, 50, 13, 54, 56, 15, 60, 62, 16, 66, 68, 18, 72, 74, 19, 78, 80, 21, 84, 86, 22, 90, 92, 24, 96, 98, 25, 102, 104, 27, 108, 110, 28, 114, 116, 30, 120, 122, 31, 126, 128, 33, 132, 134, 34
Offset: 0
a(0) = 2*0 = 0, a(1) = 2*1 = 2, a(3) = 2*3 = 6, a(4) = 2*4 = 8, ... since these indices are not congruent to 2 (mod 3).
a(2) = ceiling(2/2) = 1, a(5) = ceiling(5/2) = 3, a(8) = ceiling(8/2) = 4, a(11) = ceiling(11/2) = 6, ... since these indices are congruent to 2 (mod 3).
-
Table[If[Mod[n,3]==2,Ceiling[n/2],2n],{n,0,70}] (* or *) LinearRecurrence[{0,0,1,0,0,1,0,0,-1},{0,2,1,6,8,3,12,14,4},70] (* Harvey P. Dale, Nov 20 2013 *)
-
A138750(n) = if( n%3==2, ceil(n/2), 2*n )
A157176
a(n+1) = a(n - n mod 2) + a(n - n mod 3), a(0) = 1.
Original entry on oeis.org
1, 2, 2, 3, 5, 8, 8, 16, 16, 24, 40, 64, 64, 128, 128, 192, 320, 512, 512, 1024, 1024, 1536, 2560, 4096, 4096, 8192, 8192, 12288, 20480, 32768, 32768, 65536, 65536, 98304, 163840, 262144, 262144, 524288, 524288, 786432, 1310720, 2097152, 2097152, 4194304, 4194304
Offset: 0
-
LinearRecurrence[{0,0,0,0,0,8},{1, 2, 2, 3, 5, 8},45] (* Stefano Spezia, May 29 2024 *)
A016937
a(n) = (6*n + 2)^5.
Original entry on oeis.org
32, 32768, 537824, 3200000, 11881376, 33554432, 79235168, 164916224, 312500000, 550731776, 916132832, 1453933568, 2219006624, 3276800000, 4704270176, 6590815232, 9039207968, 12166529024, 16105100000, 21003416576, 27027081632, 34359738368, 43204003424, 53782400000
Offset: 0
-
[(6*n+2)^5: n in [0..30]]; // Vincenzo Librandi, May 04 2011
-
(6*Range[0,20]+2)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{32,32768,537824,3200000,11881376,33554432},20] (* Harvey P. Dale, Dec 13 2012 *)
A016938
a(n) = (6*n + 2)^6.
Original entry on oeis.org
64, 262144, 7529536, 64000000, 308915776, 1073741824, 3010936384, 7256313856, 15625000000, 30840979456, 56800235584, 98867482624, 164206490176, 262144000000, 404567235136, 606355001344, 885842380864, 1265319018496, 1771561000000, 2436396322816, 3297303959104
Offset: 0
A134494
a(n) = Fibonacci(6n+2).
Original entry on oeis.org
1, 21, 377, 6765, 121393, 2178309, 39088169, 701408733, 12586269025, 225851433717, 4052739537881, 72723460248141, 1304969544928657, 23416728348467685, 420196140727489673, 7540113804746346429, 135301852344706746049, 2427893228399975082453
Offset: 0
Cf.
A000045,
A001906,
A001519,
A015448,
A014445,
A033887-
A033891,
A049310,
A049660,
A099100,
A102312,
A103134,
A134490 -
A134504.
-
[Fibonacci(6*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
seq( combinat[fibonacci](6*n+2),n=0..10) ; # R. J. Mathar, Apr 17 2011
-
Table[Fibonacci[6n+2], {n, 0, 30}]
Table[ChebyshevU[3*n, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
-
a(n)=fibonacci(6*n+2) \\ Charles R Greathouse IV, Jun 11 2015
-
Vec((1+3*x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016
Original entry on oeis.org
3, 18, 42, 84, 126, 189, 249, 333, 426, 546, 642, 768, 882, 1068, 1200, 1368, 1539, 1749, 1965, 2175, 2361, 2616, 2820, 3156, 3378, 3678, 3918, 4212, 4536, 4908, 5244, 5580, 5874, 6339, 6651, 7029, 7359, 7863, 8295, 8715, 9114, 9594, 9978, 10566, 11046, 11604, 12024, 12528
Offset: 0
-
Accumulate[Table[DivisorSigma[1, 6*n + 2], {n, 0, 50}]] (* Amiram Eldar, Sep 08 2023 *)
-
a(n) = sum(k=0, n, sigma(6*k+2)); \\ Michel Marcus, Sep 09 2023
A016939
a(n) = (6n+2)^7.
Original entry on oeis.org
128, 2097152, 105413504, 1280000000, 8031810176, 34359738368, 114415582592, 319277809664, 781250000000, 1727094849536, 3521614606208, 6722988818432, 12151280273024, 20971520000000, 34792782221696, 55784660123648, 86812553324672, 131593177923584, 194871710000000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
A112414
a(n) = 3*n + 7.
Original entry on oeis.org
7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184
Offset: 0
Better definition from
T. D. Noe, Nov 30 2006
A334715
A(n,k) = !n + [n > 0] * (k * n!), where !n = A000166(n) is subfactorial of n and [] is an Iverson bracket; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 3, 5, 8, 9, 1, 4, 7, 14, 33, 44, 1, 5, 9, 20, 57, 164, 265, 1, 6, 11, 26, 81, 284, 985, 1854, 1, 7, 13, 32, 105, 404, 1705, 6894, 14833, 1, 8, 15, 38, 129, 524, 2425, 11934, 55153, 133496, 1, 9, 17, 44, 153, 644, 3145, 16974, 95473, 496376, 1334961
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
1, 3, 5, 7, 9, 11, 13, 15, ...
2, 8, 14, 20, 26, 32, 38, 44, ...
9, 33, 57, 81, 105, 129, 153, 177, ...
44, 164, 284, 404, 524, 644, 764, 884, ...
265, 985, 1705, 2425, 3145, 3865, 4585, 5305, ...
1854, 6894, 11934, 16974, 22014, 27054, 32094, 37134, ...
...
-
A:= proc(n, k) option remember; `if`(n<2,
(k-1)*n+1, n*A(n-1, k)+(-1)^n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
A[n_, k_] := Subfactorial[n] + Boole[n>0] k n!;
Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)
Comments