cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A354939 Row 9 of A354940: Numbers k for which A345992(k) = 9, divided by 9.

Original entry on oeis.org

5, 7, 10, 14, 16, 19, 23, 25, 28, 32, 37, 41, 43, 46, 50, 59, 61, 64, 68, 73, 79, 82, 86, 91, 97, 100, 109, 113, 118, 122, 127, 131, 136, 145, 149, 151, 158, 163, 167, 169, 172, 181, 185, 194, 199, 212, 221, 223, 226, 235, 239, 241, 244, 253, 257, 262, 271, 277, 289, 293, 298, 302, 307, 311, 313, 316, 325, 331, 334
Offset: 1

Views

Author

Antti Karttunen, Jun 15 2022

Keywords

Comments

Apparently, all terms are either of the form 9k+1 (in A017173), or 9k+5 (in A017221), or 9k+7 (in A017245).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), 9*n], m++]; GCD[9*n, m] == 9]; Select[Range[335], q] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    A354939(n) = A354940sq(9,n); \\ See the program in A354940.

A001534 a(n) = (9*n+1)*(9*n+8).

Original entry on oeis.org

8, 170, 494, 980, 1628, 2438, 3410, 4544, 5840, 7298, 8918, 10700, 12644, 14750, 17018, 19448, 22040, 24794, 27710, 30788, 34028, 37430, 40994, 44720, 48608, 52658, 56870, 61244, 65780, 70478, 75338, 80360, 85544, 90890, 96398, 102068, 107900, 113894, 120050
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{n9=9n},(n9+1)(n9+8)];Array[f,40,0] (* or *) LinearRecurrence[ {3,-3,1},{8,170,494},50] (* Harvey P. Dale, Aug 20 2011 *)
  • PARI
    a(n)=(9*n+1)*(9*n+8) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 162*n + a(n-1) with a(0)=8. - Vincenzo Librandi, Nov 12 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=8, a(1)=170, a(2)=494. - Harvey P. Dale, Aug 20 2011
G.f.: -((2*(x*(4*x+73)+4))/(x-1)^3). - Harvey P. Dale, Aug 20 2011
Sum_{n>=0} 1/a(n) = (Psi(8/9)-Psi(1/9))/63 = 0.13700722.. - R. J. Mathar, May 30 2022
Sum_{n>=0} 1/a(n) = cot(Pi/9)*Pi/63. - Amiram Eldar, Sep 10 2022
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017173(n)*A017257(n).
Product_{n>=0} (1 - 1/a(n)) = cosec(Pi/9)*cos(sqrt(53)*Pi/18).
Product_{n>=0} (1 + 1/a(n)) = cosec(Pi/9)*cos(sqrt(5)*Pi/6). (End)
E.g.f.: exp(x)*(8 + 81*x*(2 + x)). - Elmo R. Oliveira, Oct 18 2024

A115282 Correlation triangle for the sequence 3-2*0^n.

Original entry on oeis.org

1, 3, 3, 3, 10, 3, 3, 12, 12, 3, 3, 12, 19, 12, 3, 3, 12, 21, 21, 12, 3, 3, 12, 21, 28, 21, 12, 3, 3, 12, 21, 30, 30, 21, 12, 3, 3, 12, 21, 30, 37, 30, 21, 12, 3, 3, 12, 21, 30, 39, 39, 30, 21, 12, 3, 3, 12, 21, 30, 39, 46, 39, 30, 21, 12, 3
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Row sums are A102214. Diagonal sums are A115283. T(2n,n) is 9n+1 (A017173), the partial sums of (3-2*0^n)^2. T(2n,n)-T(2n,n+1) is 7-6*0^n.

Examples

			Triangle begins
1;
3, 3;
3,10, 3;
3,12,12, 3;
3,12,19,12, 3;
3,12,21,21,12, 3;
3,12,21,28,21,12,3;
		

Formula

G.f.: (1+2x)(1+2x*y)/((1-x)(1-x*y)(1-x^2*y)); Number triangle T(n, k)=sum{j=0..n, [j<=k]*(3-2*0^(k-j))*[j<=n-k]*(3-2*0^(n-k-j))}.

A141324 Sum of digits of A002452(n).

Original entry on oeis.org

0, 1, 1, 10, 10, 19, 19, 37, 28, 37, 37, 37, 37, 46, 73, 55, 55, 64, 73, 73, 64, 82, 73, 109, 100, 118, 91, 109, 109, 118, 127, 127, 109, 136, 145, 127, 145, 136, 145, 163, 145, 154, 172, 190, 127, 181, 199, 208, 217, 190, 181, 235, 235, 253, 226, 217, 226, 235, 262
Offset: 0

Views

Author

Paul Curtz, Aug 03 2008

Keywords

Crossrefs

Cf. A017173.

Programs

  • Maple
    A002452 := proc(n) (9^n-1)/8 ; end: A007953 := proc(n) local i ; add(i,i=convert(n,base,10)) ; end: A141324 := proc(n) A007953(A002452(n)) ; end: for n from 0 to 80 do printf("%d,",A141324(n)) ; od: # R. J. Mathar, Aug 09 2008
  • Mathematica
    Total[IntegerDigits[#]]&/@LinearRecurrence[{10,-9},{0,1},60] (* Harvey P. Dale, Sep 23 2018 *)

Formula

a(n)=A007953(A002452(n)).

Extensions

Extended by R. J. Mathar, Aug 09 2008

A168416 a(n) = 1 + 9*floor(n/2).

Original entry on oeis.org

1, 10, 10, 19, 19, 28, 28, 37, 37, 46, 46, 55, 55, 64, 64, 73, 73, 82, 82, 91, 91, 100, 100, 109, 109, 118, 118, 127, 127, 136, 136, 145, 145, 154, 154, 163, 163, 172, 172, 181, 181, 190, 190, 199, 199, 208, 208, 217, 217, 226, 226, 235, 235, 244, 244, 253, 253
Offset: 1

Views

Author

Vincenzo Librandi, Nov 25 2009

Keywords

Crossrefs

Cf. A017173.

Programs

  • Magma
    [1+9*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Mathematica
    Table[1 + 9 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[(1 + 9 x - x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)

Formula

a(n) = 9*n - a(n-1) - 7, with n>1, a(1)=1.
G.f.: x*(1 + 9*x - x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 19 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013
E.g.f.: (1/4)*(9 - 4*exp(x) + (18*x - 5)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 22 2016

Extensions

New definition by Vincenzo Librandi, Sep 19 2013

A172174 a(n) = 90*a(n-1) + 1.

Original entry on oeis.org

1, 91, 8191, 737191, 66347191, 5971247191, 537412247191, 48367102247191, 4353039202247191, 391773528202247191, 35259617538202247191, 3173365578438202247191, 285602902059438202247191, 25704261185349438202247191, 2313383506681449438202247191
Offset: 1

Views

Author

Mark Dols, Jan 28 2010

Keywords

Comments

Difference of pairs of integers given in A162849.
Sum of digits give A017173.

Crossrefs

Programs

  • Mathematica
    NestList[90#+1&,1,20] (* Harvey P. Dale, Aug 29 2014 *)
  • PARI
    Vec(1/((x-1)*(90*x-1)) + O(x^30)) \\ Colin Barker, Oct 02 2015
    
  • SageMath
    [(90^n -1)/89 for n in (1..50)] # G. C. Greubel, Apr 26 2022

Formula

From Colin Barker, Oct 02 2015: (Start)
a(n) = 91*a(n-1) - 90*a(n-2) for n>2.
G.f.: 1 / ((1-x)*(1-90*x)). (End)

A231233 Triangle T(n,k) = greatest prime factor of n*k+1.

Original entry on oeis.org

2, 3, 5, 2, 7, 5, 5, 3, 13, 17, 3, 11, 2, 7, 13, 7, 13, 19, 5, 31, 37, 2, 5, 11, 29, 3, 43, 5, 3, 17, 5, 11, 41, 7, 19, 13, 5, 19, 7, 37, 23, 11, 2, 73, 41, 11, 7, 31, 41, 17, 61, 71, 3, 13, 101, 3, 23, 17, 5, 7, 67, 13, 89, 5, 37, 61, 13, 5, 37, 7, 61, 73, 17, 97, 109, 11, 19, 29
Offset: 1

Views

Author

Michel Marcus, Nov 06 2013

Keywords

Examples

			Triangle begins:
  2;
  3,  5;
  2,  7,  5;
  5,  3, 13, 17;
  3, 11,  2,  7, 13;
  7, 13, 19,  5, 31, 37;
  2,  5, 11, 29,  3, 43,  5;
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12],n->List([1..n],k->Maximum(FactorsInt(n*k+1))))); # Muniru A Asiru, Sep 23 2018
  • Mathematica
    T[n_, k_] := FactorInteger[n k + 1][[-1, 1]];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 23 2018 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for (k=1, n, f = factor(n*k+1); print1(f[#f~, 1], ", ");); print(););}
    

Formula

T(n, k) = A006530(n*k+1).

A296180 Triangle read by rows: T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 13, 10, 1, 1, 13, 19, 19, 13, 1, 1, 16, 25, 28, 25, 16, 1, 1, 19, 31, 37, 37, 31, 19, 1, 1, 22, 37, 46, 49, 46, 37, 22, 1, 1, 25, 43, 55, 61, 61, 55, 43, 25, 1, 1, 28, 49, 64, 73, 76, 73, 64, 49, 28, 1
Offset: 0

Views

Author

Wolfdieter Lang, Dec 20 2017

Keywords

Comments

This is member m = 3 of the family of triangles T(m; n, k) = m*(n - k)*k + 1, for m >= 0. For m = 0: A000012(n, k) (read as a triangle); for m = 1: A077028 (rascal), for m = 2: T(2, n+1, k+1) = A130154(n, k). Motivated by A130154 to look at this family of triangles.
In general the recurrence is: T(m; n, 0) = 1 and T(m; n, n) = 1 for n >= 0; T(m; n, k) = (T(m; n-1, k-1)*T(m; n-1, k) + m)/T(m; n-2, k-1), for n >= 2, k = 1..n-1.
The general g.f. of the sequence of column k (with leading zeros) is G(m; k, x) = (x^k/(1 - x)^2)*(1 + (m*k - 1)*x), k >= 0.
The general g.f. of the triangle T(m;, n, k) is GT(m; x, t) = (1 - (1 + t)*x + (m+1)*t*x^2)/((1 - t*x)*(1 - x))^2, and G(m; k, x) = (d/dt)^k GT(m; x, t)/k!|_{t=0}.
For a simple combinatorial interpretation see the one given in A130154 by Rogério Serôdio which can be generalized to m >= 3.

Examples

			The triangle T(n, k) begins:
n\k   0  1  2  3  4  5  6  7  8  9 10 ...
0:    1
1:    1  1
2:    1  4  1
3:    1  7  7  1
4:    1 10 13 10  1
5:    1 13 19 19 13  1
6:    1 16 25 28 25 16  1
7:    1 19 31 37 37 31 19  1
8:    1 22 37 46 49 46 37 22  1
9:    1 25 43 55 61 61 55 43 25  1
10:   1 28 49 64 73 76 73 64 49 28  1
...
Recurrence: 28 = T(6, 3) = (19*19 + 3)/13 = 28.
		

Crossrefs

Columns (without leading zeros): A000012, A016777, A016921, A016921, A017173, A017533, ...

Programs

  • Mathematica
    Table[3 k (n - k) + 1, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 20 2017 *)
  • PARI
    lista(nn) = for(n=0, nn, for(k=0, n, print1(3*(n - k)*k + 1, ", "))) \\ Iain Fox, Dec 21 2017

Formula

T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n,
Recurrence: T(n, 0) = 1 and T(n, n) = 1 for n >= 0; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 3)/T(n-2, k-1), for n >= 2, k = 1..n-1.
G.f. of column k (with leading zeros): (x^k/(1 - x)^2)*(1 + (3*k-1)*x), k >= 0.
G.f. of triangle: (1 - (1 + t)*x + 4*t*x^2)/((1 - t*x)*(1 - x))^2 = 1 + (1+t)*x +(1 + 4*t + t^2)*x^2 + (1 + 7*t + 7*t^2 + t^3)*x^3 = ...

A301617 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 1.

Original entry on oeis.org

1, 19, 37, 73, 91, 109, 127, 163, 181, 199, 217, 253, 271, 289, 307, 343, 361, 379, 397, 433, 451, 469, 487, 523, 541, 559, 577, 613, 631, 649, 667, 703, 721, 739, 757, 793, 811, 829, 847, 883, 901, 919, 937, 973, 991, 1009, 1027, 1063, 1081, 1099
Offset: 1

Views

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {1, 19, 37, 73} mod 90 with additive sum sequence 1{+18+18+36+18} {repeat ...}. Includes all prime numbers > 7 with digital root 1.

Examples

			1+18=19; 19+18=37; 37+36=73; 73+18=91; 91+18=109.
		

Crossrefs

Intersection of A007775 and A017173.

Programs

  • Maple
    seq(seq(i+90*j,i=[1,19,37,73]),j=0..30); # Robert Israel, Mar 25 2018
  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,19,37,73,91},50] (* Harvey P. Dale, Dec 14 2019 *)
  • PARI
    a(n) = 1 + 18 * (n - 1 + n\4) \\ David A. Corneth, Mar 24 2018
    
  • PARI
    Vec(x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 24 2018

Formula

n == {1, 19, 37, 73} mod 90.
a(n + 1) = a(n) + 18 * A177704(n + 1). - David A. Corneth, Mar 24 2018
From Colin Barker, Mar 24 2018: (Start)
G.f.: x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

Extensions

The missing term 1081 added to the sequence by Colin Barker, Mar 24 2018

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Views

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.
Previous Showing 31-40 of 44 results. Next