cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A154419 Primes of the form 20*k^2 + 36*k + 17.

Original entry on oeis.org

17, 73, 953, 1249, 2377, 2833, 3329, 4441, 8737, 12401, 13417, 15569, 17881, 20353, 21649, 28729, 33457, 36809, 49801, 51817, 62497, 67049, 71761, 74177, 86857, 89513, 100537, 103393, 118273, 121369, 127681, 134153, 144161, 161641, 168913
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Comments

Also primes of the form 5*j^2 + 18*j + 17. (Proof: this format implies that j=2*k, even, because otherwise 5*j^2 + 18*j + 17 is even and cannot be prime. So 5*j^2 + 18*j + 17 = 20*k^2 + 36*k + 17.) - R. J. Mathar, Jan 12 2009

Crossrefs

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 20*n^2+36*n+17]; // Vincenzo Librandi, Jul 23 2012
    
  • Mathematica
    Select[Table[20n^2+36n+17,{n,0,6001}],PrimeQ] (* Vincenzo Librandi, Jul 23 2012 *)
  • PARI
    select(isprime, vector(100, n, 20*(n-1)^2 + 36*(n-1) + 17)) \\ Robert C. Lyons,  Feb 27 2025

A161365 a(n) = 3/2 + 5*n - 5*(-1)^n/2.

Original entry on oeis.org

9, 9, 19, 19, 29, 29, 39, 39, 49, 49, 59, 59, 69, 69, 79, 79, 89, 89, 99, 99, 109, 109, 119, 119, 129, 129, 139, 139, 149, 149, 159, 159, 169, 169, 179, 179, 189, 189, 199, 199, 209, 209, 219, 219, 229, 229, 239, 239, 249, 249, 259, 259, 269, 269, 279, 279, 289
Offset: 1

Views

Author

Vincenzo Librandi, Nov 25 2009

Keywords

Programs

  • Magma
    I:=[9, 9, 19]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..60]]; // Vincenzo Librandi, Mar 02 2012
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {9, 9, 19}, 60] (* Vincenzo Librandi, Mar 02 2012 *)
    Table[3/2+5n-(5(-1)^n)/2,{n,60}] (* or *) nxt[{n_,a_}]:={n+1,10(n+1)-a-2}; NestList[nxt,{1,9},60][[;;,2]] (* Harvey P. Dale, Nov 04 2024 *)
  • PARI
    for(n=1, 60, print1(3/2+5*n-5*(-1)^n/2", ")); \\ Vincenzo Librandi, Mar 02 2012

Formula

a(n) = 10*n - a(n-1) - 2, n > 1.
a(n+1) = A017377(floor(n/2)). - R. J. Mathar, Jan 05 2011
G.f.: x*(9+x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Jan 05 2011

Extensions

Definition rewritten by R. J. Mathar, Jan 05 2011

A168419 a(n) = 9*floor(n/2).

Original entry on oeis.org

0, 9, 9, 18, 18, 27, 27, 36, 36, 45, 45, 54, 54, 63, 63, 72, 72, 81, 81, 90, 90, 99, 99, 108, 108, 117, 117, 126, 126, 135, 135, 144, 144, 153, 153, 162, 162, 171, 171, 180, 180, 189, 189, 198, 198, 207, 207, 216, 216, 225, 225, 234, 234, 243, 243, 252, 252, 261
Offset: 1

Views

Author

Vincenzo Librandi, Nov 25 2009

Keywords

Crossrefs

Programs

  • Magma
    [9*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Mathematica
    Table[9 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[9 x/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
    LinearRecurrence[{1,1,-1},{0,9,9},60] (* Harvey P. Dale, Apr 21 2019 *)

Formula

a(n) = 9*n - a(n-1) - 9, with n>1, a(1)=0.
G.f.: 9*x^2/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 19 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013
E.g.f.: (9/4)*(1 + (2*x - 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 22 2016

Extensions

New definition by Vincenzo Librandi, Sep 19 2013

A239794 5*n^2 + 4*n - 15.

Original entry on oeis.org

-6, 13, 42, 81, 130, 189, 258, 337, 426, 525, 634, 753, 882, 1021, 1170, 1329, 1498, 1677, 1866, 2065, 2274, 2493, 2722, 2961, 3210, 3469, 3738, 4017, 4306, 4605, 4914, 5233, 5562, 5901, 6250, 6609, 6978, 7357, 7746, 8145, 8554, 8973, 9402, 9841, 10290
Offset: 1

Views

Author

Katherine Guo, Mar 26 2014

Keywords

Comments

Follows the integer values from 1 on the quadratic equation 5*x^2 + 4*n - 15, this is the case x=n.

Examples

			For n=3, a(3) = 5*3^2 + 4*3 - 15 = 42; for n=6, a(6) = 5*6^2 + 4*6 - 15 = 189.
		

Crossrefs

Programs

  • Magma
    [5*n^2+4*n-15: n in [1..50]];
    
  • Mathematica
    Table[5 n^2 + 4 n - 15, {n, 50}]
    CoefficientList[Series[(6 - 31 x + 15 x^2)/(x - 1)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 29 2014 *)
    LinearRecurrence[{3,-3,1},{-6,13,42},50] (* Harvey P. Dale, May 30 2025 *)
  • PARI
    a(n)=5*n^2+4*n-15 \\ Charles R Greathouse IV, Jun 17 2017

Formula

From Bruno Berselli, Mar 27 2014: (Start)
G.f.: -x*(6 - 31*x + 15*x^2)/(1 - x)^3.
a(n+1) - a(n) = A017377(n).
a(n) - a(-n) = A008590(n). (End)

A250024 a(n) = 40*n - 21.

Original entry on oeis.org

19, 59, 99, 139, 179, 219, 259, 299, 339, 379, 419, 459, 499, 539, 579, 619, 659, 699, 739, 779, 819, 859, 899, 939, 979, 1019, 1059, 1099, 1139, 1179, 1219, 1259, 1299, 1339, 1379, 1419, 1459, 1499, 1539, 1579, 1619, 1659, 1699, 1739, 1779, 1819, 1859, 1899
Offset: 1

Views

Author

Karl V. Keller, Jr., Nov 10 2014

Keywords

Comments

This is the sequence of numbers congruent to 19 mod 40.

Crossrefs

Cf. A017377 (10*n+9), A142190 (prime terms).

Programs

Formula

From Vincenzo Librandi, Nov 11 2014: (Start)
G.f.: x*(19+21*x)/(1-x)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 21 + exp(x)*(40*x - 21).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

A266297 Numbers whose last digit is a square.

Original entry on oeis.org

0, 1, 4, 9, 10, 11, 14, 19, 20, 21, 24, 29, 30, 31, 34, 39, 40, 41, 44, 49, 50, 51, 54, 59, 60, 61, 64, 69, 70, 71, 74, 79, 80, 81, 84, 89, 90, 91, 94, 99, 100, 101, 104, 109, 110, 111, 114, 119, 120, 121, 124, 129, 130, 131, 134, 139, 140, 141, 144, 149
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 26 2015

Keywords

Comments

Numbers ending in 0, 1, 4 and 9.
Union of A008592, A017281, A017317 and A017377. - Hurt
None of these numbers are prime in Z[phi] (where phi = 1/2 + sqrt(5)/2 is the golden ratio), since the numbers in this sequence that are prime in Z can be expressed in the form (a - b sqrt(5))(a + b sqrt(5)). - Alonso del Arte, Dec 30 2015
Union of A197652 and A016897. - Wesley Ivan Hurt, Dec 31 2015
Union of A146763 and A090771. - Wesley Ivan Hurt, Jan 01 2016

Crossrefs

Programs

  • Magma
    [(10*n-11+(-1)^n+(4+2*(-1)^n)*(-1)^((2*n-1+(-1)^n) div 4))/4: n in [1..60]]; // Vincenzo Librandi, Dec 27 2015
    
  • Maple
    A266297:=n->(10*n-11+(-1)^n+(4+2*(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/4: seq(A266297(n), n=1..100);
  • Mathematica
    Table[(10 n - 11 + (-1)^n + (4 + 2 (-1)^n)*(-1)^((2 n - 1 + (-1)^n)/4))/4, {n, 50}] (* G. C. Greubel, Dec 27 2015 *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 4, 9, 10}, 60] (* Vincenzo Librandi, Dec 27 2015 *)
    CoefficientList[Series[x*(1 + 3*x + 5*x^2 + x^3)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Dec 30 2015 *)
    Flatten[Table[10n + {0, 1, 4, 9}, {n, 0, 19}]] (* Alonso del Arte, Dec 30 2015 *)
    Select[Range[0,150],MemberQ[{0,1,4,9},Mod[#,10]]&] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    is(n) = issquare(n%10); \\ Altug Alkan, Dec 29 2015

Formula

G.f.: x^2*(1 + 3*x + 5*x^2 + x^3)/((x - 1)^2*(1 + x + x^2 + x^3)).
a(n) = a(n - 1) + (n - 4) - a(n - 5) for n > 5.
a(n) = (10n - 11 + (-1)^n + (4 + 2(-1)^n) * (-1)^((2n - 1 + (-1)^n)/4))/4.
a(n+1) - a(n) = A091084(n+1) for n>0.
Sum_{n>=2} (-1)^n/a(n) = (14*sqrt(5)*arccoth(sqrt(5)) - 2*Pi*sqrt(1-2/sqrt(5)) + 16*log(2) + 5*log(5))/40. - Amiram Eldar, Jul 30 2024

A348544 Positive integers that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.

Original entry on oeis.org

189, 399, 459, 609, 729, 819, 969, 999, 1029, 1239, 1269, 1449, 1479, 1539, 1659, 1729, 1809, 1869, 1989, 2079, 2109, 2289, 2349, 2499, 2619, 2639, 2679, 2709, 2889, 2919, 3009, 3059, 3129, 3159, 3219, 3249, 3339, 3429, 3519, 3549, 3699, 3759, 3819, 3969, 4029
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

Intersection of A346950 and A348054.

Examples

			189 = 7*27 = 3*63, 399 = 3*133 = 7*57, 459 = 3*153 = 17*27, 609 = 3*203 = 7*87, ...
		

Crossrefs

Cf. A017377 (supersequence), A346950, A348054, A348546.

Programs

  • Mathematica
    max=4050; Select[Intersection[Union@Flatten@Table[a*b, {a, 3, Floor[max/3], 10}, {b, a, Floor[max/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[max/7], 10}, {b, a, Floor[max/a], 10}]], 0<#
    				
  • PARI
    isok(m) = my(ok3=0, ok7=0); fordiv(m, d, if (((d % 10) == 3) && ((m/d % 10) == 3), ok3++); if (((d % 10) == 7) && ((m/d % 10) == 7), ok7++); if (ok3 && ok7, return(1))); \\ Michel Marcus, Oct 22 2021
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) & set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(4029)) # Michael S. Branicky, Oct 22 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A348545 Positive integers with final digit 9 that are equal to the product of two integers ending with the same digit.

Original entry on oeis.org

9, 39, 49, 69, 99, 119, 129, 159, 169, 189, 219, 249, 259, 279, 289, 299, 309, 329, 339, 369, 399, 429, 459, 469, 489, 519, 529, 539, 549, 559, 579, 609, 629, 639, 669, 679, 689, 699, 729, 749, 759, 789, 799, 819, 849, 879, 889, 909, 939, 949, 959, 969, 989, 999
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

Union of A346950 and A348054.

Examples

			9 = 3*3, 39 = 3*13, 49 = 7*7, 69 = 3*23, 99 = 3*33, 119 = 7*17, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63 = 7*27, ...
		

Crossrefs

Cf. A017377 (supersequence), A346950, A348054, A348547.

Programs

  • Mathematica
    a={}; For[n=0, n<=100, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3 && 10*n+9>Max[a] || Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • PARI
    isok(m) = ((m%10) == 9) && sumdiv(m, d, (d % 10) == (m/d % 10)); \\ Michel Marcus, Oct 22 2021
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) | set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(999)) # Michael S. Branicky, Oct 22 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A157917 A decimation of the EKG sequence: A064413(10n+9).

Original entry on oeis.org

10, 22, 39, 45, 56, 66, 75, 88, 47, 106, 117, 133, 201, 219, 162, 166, 180, 189, 101, 216, 225, 234, 242, 258, 275, 137, 286, 149, 306, 315, 341, 343, 519, 360, 368, 361, 416, 402, 391, 434, 425, 446, 454, 687, 476, 717, 495, 518, 513, 524, 538, 549, 554, 562, 283, 588
Offset: 0

Views

Author

Paul Curtz, Mar 09 2009

Keywords

Comments

The average growth is roughly 10.5*n, and two streaks of subsequences growing roughly proportional to 15.6*n and 5.2*n appear also in the graph.

Formula

a(n)=A064413(A017377(n)).

Extensions

Edited and extended by R. J. Mathar, Mar 15 2009

A270968 Reduced 5x+1 function R applied to the odd integers: a(n) = R(2n-1), where R(k) = (5k+1)/2^r, with r as large as possible.

Original entry on oeis.org

3, 1, 13, 9, 23, 7, 33, 19, 43, 3, 53, 29, 63, 17, 73, 39, 83, 11, 93, 49, 103, 27, 113, 59, 123, 1, 133, 69, 143, 37, 153, 79, 163, 21, 173, 89, 183, 47, 193, 99, 203, 13, 213, 109, 223, 57, 233, 119, 243, 31, 253, 129, 263, 67, 273, 139, 283, 9, 293, 149, 303
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2016

Keywords

Comments

The odd-indexed terms a(2i+1) = 10i+3 = A017305(i), i>=0;
a(4i+4) = 10i+9 = A017377(i), i>=0;
a(8i+6) = 10i+7 = A017353(i), i>=0;
a(16i+2) = 10i+1 = A017281(i), i>=0.
Note that a(n) = a(16n-6) = a(6n-2)/3. No multiple of 5 is in this sequence.
a(n) = R(2n-1) < 2n-1 for n = 2, 6, 10, ..., 2+4i,...

Examples

			a(4)=9 because (2*4-1) = 7  -> (5*7+1)/2^2 = 9.
		

Crossrefs

Programs

  • Mathematica
    nextOddK[n_] := Module[{m=5n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[nextOddK[n], {n, 1, 200, 2}]
  • PARI
    a(n) = my(m = 2*n-1, c = 5*m+1); c/2^valuation(c, 2); \\ Michel Marcus, Mar 27 2016

Formula

a(n) = A000265(A017341(n-1)). - Michel Marcus, Mar 27 2016
Previous Showing 31-40 of 41 results. Next