cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A161709 a(n) = 22*n + 1.

Original entry on oeis.org

1, 23, 45, 67, 89, 111, 133, 155, 177, 199, 221, 243, 265, 287, 309, 331, 353, 375, 397, 419, 441, 463, 485, 507, 529, 551, 573, 595, 617, 639, 661, 683, 705, 727, 749, 771, 793, 815, 837, 859, 881, 903, 925, 947, 969, 991, 1013, 1035, 1057, 1079, 1101, 1123
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

References

  • Italo Ghersi, Matematica dilettevole e curiosa, p. 139, Hoepli, Milano, 1967. [From Vincenzo Librandi, Dec 02 2009]

Crossrefs

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1 + 21*x)/(1-x)^2.
E.g.f.: (1 + 22*x)*exp(x). (End)

A161714 a(n) = 28*n + 1.

Original entry on oeis.org

1, 29, 57, 85, 113, 141, 169, 197, 225, 253, 281, 309, 337, 365, 393, 421, 449, 477, 505, 533, 561, 589, 617, 645, 673, 701, 729, 757, 785, 813, 841, 869, 897, 925, 953, 981, 1009, 1037, 1065, 1093, 1121, 1149, 1177, 1205, 1233, 1261, 1289, 1317, 1345, 1373
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Crossrefs

Programs

Formula

G.f.: (1 + 27*x)/(1-x)^2. - Indranil Ghosh, Apr 05 2017
E.g.f.: (1 + 28*x)*exp(x). - G. C. Greubel, Sep 18 2019

A056530 Sequence remaining after third round of Flavius Josephus sieve; remove every fourth term of A047241.

Original entry on oeis.org

1, 3, 7, 13, 15, 19, 25, 27, 31, 37, 39, 43, 49, 51, 55, 61, 63, 67, 73, 75, 79, 85, 87, 91, 97, 99, 103, 109, 111, 115, 121, 123, 127, 133, 135, 139, 145, 147, 151, 157, 159, 163, 169, 171, 175, 181, 183, 187, 193, 195, 199, 205, 207, 211, 217, 219, 223, 229, 231
Offset: 1

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Comments

Numbers {1, 3, 7} mod 12: A017533, A017557, A017605 interleaved.

Crossrefs

We have A000027 after 0 rounds of sieving, A005408 after 1 round of sieving, A047241 after 2 rounds, A056530 after 3 rounds, A056531 after 4 rounds, A000960 after all rounds. After n rounds the remaining sequence comprises A002944(n) numbers mod A003418(n+1), i.e. 1/(n+1) of them.

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,3,7,13},60] (* Harvey P. Dale, Oct 19 2022 *)

Formula

From Chai Wah Wu, Jul 24 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
G.f.: x*(5*x^3 + 4*x^2 + 2*x + 1)/(x^4 - x^3 - x + 1). (End)
a(n) = 4*n - (13 + 2*A131713(n))/3. - R. J. Mathar, Jun 22 2020

A103214 a(n) = 24*n + 1.

Original entry on oeis.org

1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265, 289, 313, 337, 361, 385, 409, 433, 457, 481, 505, 529, 553, 577, 601, 625, 649, 673, 697, 721, 745, 769, 793, 817, 841, 865, 889, 913, 937, 961, 985, 1009, 1033, 1057, 1081, 1105, 1129, 1153, 1177, 1201
Offset: 0

Views

Author

Ralf Stephan, Jan 28 2005

Keywords

Crossrefs

Equals A008606 + 1. Bisection of A017533.
Cf. A255185.

Programs

Formula

From Elmo R. Oliveira, Mar 21 2024: (Start)
G.f.: (1+23*x)/(1-x)^2.
E.g.f.: exp(x)*(1 + 24*x).
a(n) = A255185(n+1) - A255185(n).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A130154 Triangle read by rows: T(n, k) = 1 + 2*(n-k)*(k-1) (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 9, 7, 1, 1, 9, 13, 13, 9, 1, 1, 11, 17, 19, 17, 11, 1, 1, 13, 21, 25, 25, 21, 13, 1, 1, 15, 25, 31, 33, 31, 25, 15, 1, 1, 17, 29, 37, 41, 41, 37, 29, 17, 1, 1, 19, 33, 43, 49, 51, 49, 43, 33, 19, 1, 1, 21, 37, 49, 57, 61, 61, 57, 49, 37, 21, 1
Offset: 1

Views

Author

Emeric Deutsch, May 22 2007

Keywords

Comments

Column k, except for the initial k-1 0's, is an arithmetic progression with first term 1 and common difference 2(k-1). Row sums yield A116731. First column of the inverse matrix is A129779.
Studied by Paul Curtz circa 1993.
From Rogério Serôdio, Dec 19 2017: (Start)
T(n, k) gives the number of distinct sums of 2(k-1) elements in {1,1,2,2,...,n-1,n-1}. For example, T(6, 2) = the number of distinct sums of 2 elements in {1,1,2,2,3,3,4,4,5,5}, and because each sum from the smallest 1 + 1 = 2 to the largest 5 + 5 = 10 appears, T(6, 2) = 10 - 1 = 9. [In general: 2*(Sum_{j=1..(k-1)} n-j) - (2*(Sum_{j=1..k-1} j) - 1) = 2*n*(k-1) - 4*(k-1)*k/2 + 1 = 2*(k-1)*(n-k) + 1 = T(n, k). - Wolfdieter Lang, Dec 20 2017]
T(n, k) is the number of lattice points with abscissa x = 2*(k-1) and even ordinate in the closed region bounded by the parabola y = x*(2*(n-1) - x) and the x axis. [That is, (1/2)*y(2*(k-1)) + 1 = T(n, k). - Wolfdieter Lang, Dec 20 2017]
Pascal's triangle (A007318, but with apex in the middle) is formed using the rule South = West + East; the rascal triangle A077028 uses the rule South = (West*East + 1)/North; the present triangle uses a similar rule: South = (West*East + 2)/North. See the formula section for this recurrence. (End)

Examples

			The triangle T(n, k) starts:
  n\k  1  2  3  4  5  6  7  8  9 10 ...
  1:   1
  2:   1  1
  3:   1  3  1
  4:   1  5  5  1
  5:   1  7  9  7  1
  6:   1  9 13 13  9  1
  7:   1 11 17 19 17 11  1
  8:   1 13 21 25 25 21 13  1
  9:   1 15 25 31 33 31 25 15  1
 10:   1 17 29 37 41 41 37 29 17  1
 ... reformatted. - _Wolfdieter Lang_, Dec 19 2017
		

Crossrefs

Column sequences (no leading zeros): A000012, A016813, A016921, A017077, A017281, A017533, A131877, A158057, A161705, A215145.

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> 1 + 2*(n-k)*(k-1) ))); # G. C. Greubel, Nov 25 2019
  • Magma
    [1 + 2*(n-k)*(k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 25 2019
    
  • Maple
    T:=proc(n,k) if k<=n then 2*(n-k)*(k-1)+1 else 0 fi end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[1+2(n-k)(k-1),{n,0,20},{k,n}]] (* Harvey P. Dale, Jul 13 2013 *)
  • PARI
    T(n, k) = 1 + 2*(n-k)*(k-1) \\ Iain Fox, Dec 19 2017
    
  • PARI
    first(n) = my(res = vector(binomial(n+1,2)), i = 1); for(r=1, n, for(k=1, r, res[i] = 1 + 2*(r-k)*(k-1); i++)); res \\ Iain Fox, Dec 19 2017
    
  • Sage
    [[1 + 2*(n-k)*(k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 25 2019
    

Formula

T(n, k) = 1 + 2*(n-k)*(k-1) (1 <= k <= n).
G.f.: G(t,z) = t*z*(3*t*z^2 - z - t*z + 1)/((1-t*z)*(1-z))^2.
Equals = 2 * A077028 - A000012 as infinite lower triangular matrices. - Gary W. Adamson, Oct 23 2007
T(n, 1) = 1 and T(n, n) = 1 for n >= 1; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 2)/T(n-2, k-1), for n > 2 and 1 < k < n. See a comment above. - Rogério Serôdio, Dec 19 2017
G.f. column k (with leading zeros): (x^k/(1-x)^2)*(1 + (2*k-3)*x), k >= 1. See the g.f. of the triangle G(t,z) above: (d/dt)^k G(t,x)/k!|{t=0}. - _Wolfdieter Lang, Dec 20 2017

Extensions

Edited by Wolfdieter Lang, Dec 19 2017

A001538 a(n) = (12*n+1)*(12*n+11).

Original entry on oeis.org

11, 299, 875, 1739, 2891, 4331, 6059, 8075, 10379, 12971, 15851, 19019, 22475, 26219, 30251, 34571, 39179, 44075, 49259, 54731, 60491, 66539, 72875, 79499, 86411, 93611, 101099, 108875, 116939, 125291, 133931, 142859, 152075, 161579, 171371, 181451, 191819
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(12n+1)(12n+11),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{11,299,875},40] (* Harvey P. Dale, Jul 22 2024 *)
  • PARI
    a(n)=(12*n+1)*(12*n+11) \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = (9*A001533(n) - 19)/4.
a(n) = 288*n + a(n-1) with a(0)=11. - Vincenzo Librandi, Nov 12 2010
G.f.: -(11 + 266*x + 11*x^2)/(x-1)^3. - R. J. Mathar, Jun 30 2020
From Amiram Eldar, Feb 20 2023: (Start)
a(n) = A017533(n)*A017653(n).
Sum_{n>=0} 1/a(n) = (sqrt(3)+2)*Pi/120.
Sum_{n>=0} (-1)^n/a(n) = (4*log(sqrt(2)+1) + sqrt(3)*log(5+2*sqrt(6)))/(60*sqrt(2)).
Product_{n>=0} (1 - 1/a(n)) = (2*sqrt(2)/(sqrt(3)-1))*cos(sqrt(13/2)*Pi/6).
Product_{n>=0} (1 + 1/a(n)) = 2*sqrt(2+sqrt(3))*cos(Pi/sqrt(6)). (End)
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(11 + 144*x*(2 + x)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A157326 a(n) = 10368*n^2 + 288*n + 1.

Original entry on oeis.org

10657, 42049, 94177, 167041, 260641, 374977, 510049, 665857, 842401, 1039681, 1257697, 1496449, 1755937, 2036161, 2337121, 2658817, 3001249, 3364417, 3748321, 4152961, 4578337, 5024449, 5491297, 5978881, 6487201, 7016257
Offset: 1

Views

Author

Vincenzo Librandi, Feb 27 2009

Keywords

Comments

The identity (10368*n^2 + 288*n + 1)^2 - (36*n^2 + n)*(1728*n + 24)^2 = 1 can be written as a(n)^2 - A157324(n)*A157325(n)^2 = 1 (see also second part of the comment at A157324). - Vincenzo Librandi, Jan 26 2012

Crossrefs

Programs

  • Magma
    I:=[10657, 42049, 94177]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 26 2012
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{10657,42049,94177},50] (* Vincenzo Librandi, Jan 26 2012 *)
  • PARI
    for(n=1, 22, print1(10368*n^2 + 288*n + 1", ")); \\ Vincenzo Librandi, Jan 26 2012

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 26 2012
G.f.: x*(-x^2 - 10078*x - 10657)/(x-1)^3. - Vincenzo Librandi, Jan 26 2012
a(n) = 2*A017533(6n)^2 - 1. - Bruno Berselli, Jan 29 2012

A321483 a(n) = 7*2^n + (-1)^n.

Original entry on oeis.org

8, 13, 29, 55, 113, 223, 449, 895, 1793, 3583, 7169, 14335, 28673, 57343, 114689, 229375, 458753, 917503, 1835009, 3670015, 7340033, 14680063, 29360129, 58720255, 117440513, 234881023, 469762049, 939524095, 1879048193, 3758096383, 7516192769, 15032385535
Offset: 0

Views

Author

Paul Curtz, Nov 11 2018

Keywords

Comments

Difference table:
8, 13, 29, 55, 113, 223, 449, ...
5, 16, 26, 58, 110, 226, 446, 898, ...
11, 10, 32, 52, 116, 220, 452, 892, 1796, ...
-1, 22, 20, 64, 104, 232, 440, 904, 1784, 3592, ...
-2, 44, 40, 128, 208, 464, 880, 1808, 3568, 7184, ...
etc.
Every diagonal is a sequence of the form k*2^m.
a(n) is divisible by
. 5 if n is a term of A004767,
. 11 if n is a term of A016885,
. 13 if n is a term of A017533.

Crossrefs

Programs

  • Mathematica
    a[n_] := 7*2^n + (-1)^n ; Array[a, 32, 0] (* Amiram Eldar, Nov 12 2018 *)
    CoefficientList[Series[E^-x + 7 E^(2 x), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 12 2018 *)
    LinearRecurrence[{1,2},{8,13},40] (* Harvey P. Dale, Mar 18 2022 *)
  • PARI
    Vec((8 + 5*x) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Nov 11 2018

Formula

O.g.f.: (8 + 5*x) / ((1 + x)*(1 - 2*x)). - Colin Barker, Nov 11 2018
E.g.f.: exp(-x) + 7*exp(2*x). - Stefano Spezia, Nov 12 2018
a(n) = a(n-1) + 2*a(n-2).
a(n) = 2*a(n-1) + 3*(-1)^n for n>0, a(0)=8.
a(2*k) = 7*4^k + 1, a(2*k+1) = 14*4^k - 1.
a(n) = A014551(n) + A014551(n-1) + A014551(n-2).
a(n) = 2^(n+3) - 3*A001045(n).
a(n) mod 9 = A070366(n+3).
a(n) + a(n+1) = 21*2^n.

Extensions

Two terms corrected, and more terms added by Colin Barker, Nov 11 2018

A049513 Array T by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 9, 13, 1, 1, 5, 13, 25, 33, 1, 1, 6, 17, 37, 65, 81, 1, 1, 7, 21, 49, 97, 161, 193, 1, 1, 8, 25, 61, 129, 241, 385, 449, 1, 1, 9, 29, 73, 161, 321, 577, 897, 1025, 1, 1, 10, 33, 85, 193, 401, 769, 1345, 2049, 2305, 1, 1, 11, 37, 97, 225, 481
Offset: 0

Views

Author

Michael Somos, Sep 25 1999

Keywords

Examples

			Antidiagonals: 1; 1,1; 1,2,1; 1,3,5,1; 1,4,9,13,1; ...
		

Crossrefs

Essentially the same as A049069.

Programs

  • PARI
    {T(k, n) = k * n * 2^(n-1) + 1}

Formula

A005183(n) = T(1, n), A002064(n) = T(2, n), A048474(n) = T(3, n), A000337(n) = T(4, n), A016813(n) = T(n, 2), A017533(n) = T(n, 3).

A382809 a(n) = (6*n + 1)*(12*n + 1)*(18*n + 1).

Original entry on oeis.org

1, 1729, 12025, 38665, 89425, 172081, 294409, 464185, 689185, 977185, 1335961, 1773289, 2296945, 2914705, 3634345, 4463641, 5410369, 6482305, 7687225, 9032905, 10527121, 12177649, 13992265, 15978745, 18144865, 20498401, 23047129, 25798825, 28761265, 31942225, 35349481
Offset: 0

Views

Author

Stefano Spezia, Apr 05 2025

Keywords

Comments

a(n) is a Carmichael number if all the three factors (6*n + 1), (12*n + 1), and (18*n + 1) are prime (see Chernick and Ribenboim).

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 101.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 146.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,1729,12025,38665},31]

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: (1 + 1725*x + 5115*x^2 + 935*x^3)/(1 - x)^4.
E.g.f.: exp(x)*(1 + 1728*x + 4284*x^2 + 1296*x^3).
a(n) = A016921(n) * A017533(n) * A161705(n).
a(n) == 1 (mod 72).
Previous Showing 21-30 of 41 results. Next