cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A137306 Related to A018226 and A018227: due to the stable element 118 (last term in A018227) this is submitted as a suggested new observed list with 459 as a probable next new atomic weight stable island.

Original entry on oeis.org

2, 8, 20, 28, 50, 83, 118, 126, 168, 194, 298
Offset: 1

Views

Author

Roger L. Bagula, Apr 20 2008

Keywords

Comments

"These are crucial to the notion of an 'island of stability', which Glenn Seaborg espoused."

References

  • Y. Oganessian, J. Phys. G: Nucl. Part. Phys, 2007, iop.org
  • Rosenfeld, L. (1948). Nuclear Forces. Interscience Publishers, New York, xvii.
  • G. T. Seaborg - Contemporary Physics, 2004, informaworld.com

Crossrefs

Programs

  • Mathematica
    (* nuclear radius visualization from Rosenfeld*) Clear[r, A, r0, p, n, m] A[p_, n_] := If[p == 0, 1, p + n] r0 = 1.3214405*10^(-13); r[p_, n_] := r0*( 1 + 0.8*(n/A[p, n])^2 - 0.3/A[p, n]^(1/3) + 0.010*p^2/A[p, n]^(4/3)) a0 = Table[Table[r[p, n], {n, p, Floor[2*p]}], {p, 0, 120}]; ListPlot[Flatten[a0]]

Formula

Roughly a(n) = Floor[1.53*a(n-1)]

Extensions

Definition not clear to me. - N. J. A. Sloane, Apr 25 2008

A230434 Magic numbers of nucleons. Another version of A018226, with 34 inserted.

Original entry on oeis.org

2, 8, 20, 28, 34, 50, 82, 126
Offset: 1

Views

Author

Omar E. Pol, Oct 22 2013

Keywords

Comments

Union of 34 and A018226.

Crossrefs

A018227 Magic numbers: atoms with full shells containing any of these numbers of electrons are considered electronically stable.

Original entry on oeis.org

2, 10, 18, 36, 54, 86, 118, 168, 218, 290, 362, 460, 558, 686, 814, 976, 1138, 1338, 1538, 1780, 2022, 2310, 2598, 2936, 3274, 3666, 4058, 4508, 4958, 5470, 5982, 6560, 7138, 7786, 8434, 9156, 9878, 10678, 11478, 12360, 13242, 14210, 15178
Offset: 1

Views

Author

John Raithel (raithel(AT)rahul.net)

Keywords

Comments

Atomic numbers of noble elements in the periodic table.
Partial sums of A093907. - Lekraj Beedassy, Mar 24 2006
Comment from Don N. Page (don(AT)phys.ualberta.ca), Dec 12 2006: (Start)
"Relativistic corrections and instabilities to pair creation of electrons and positrons would occur even if one could have stable nuclei of arbitrarily many protons Z for the fixed value of the fine structure constant alpha ~ 1/137 in our universe.
"However, if one considered an imaginary universe with arbitrarily tiny alpha and a fixed point source of charge Z, one could have stable neutral atoms of Z nonrelativistic electrons of mass m for any Z, so long as one takes the limit Z alpha -> 0 by taking alpha -> 0 after fixing Z.
"One could then define noble elements to be given by the integer values of Z such that the ionization energy, in units of m c^2 alpha^2, of any such atom in its ground state with larger Z is less than that of the noble element (which appears to be the case for all the noble elements with the actual nonzero value of alpha).
"This sequence of idealized nonrelativistic noble elements with Z electrons would give an infinite sequence of integers Z, which may or may not be the same as that given by the explicit formula listed for the present sequence. It would likely be a difficult mathematical problem to calculate this infinite sequence." (End)

Crossrefs

Cf. A018226 for the magic numbers for nucleons (protons and neutrons).

Programs

Formula

a(n) = a(n-1) + ((2*n + 3 + (-1)^n)^2)/8; a(n) = (2*n^3 + 12*n^2 + 25*n - 6 + (-1)^n*(3*n + 6))/12. - Warut Roonguthai, Jun 20 2005
a(n) = n*((n+3)^2 + 5)/6 for even n, a(n) = n*((n+3)^2 + 2)/6 - 1 [or C(n+3,3) - 2, i.e., A000292(n) - 2] for odd n. - Lekraj Beedassy, Feb 02 2006
Partial sums of A116471. - Lekraj Beedassy, Mar 31 2006
From Daniel Forgues, May 02 2011: (Start)
a(n) = n*((n+3)^2 + 2)/6 + (n+2)*(1+(-1)^n)/4 - 1, n >= 1.
a(n) = (n+1)*(n+2)*(n+3)/6 + (n+2)*(1+(-1)^n)/4 - 2, n >= 1.
a(n) = T_{n+1} + (n+2)*(1+(-1)^n)/4 - 2, n >= 1, where T_n is the n-th tetrahedral number.
G.f.: 2*x*(1 + 3*x - 2*x^2 - x^3 + x^4)/((1 - x)^4*(1 + x)^2). (End)

A033547 Otto Haxel's guess for magic numbers of nuclear shells.

Original entry on oeis.org

0, 2, 6, 14, 28, 50, 82, 126, 184, 258, 350, 462, 596, 754, 938, 1150, 1392, 1666, 1974, 2318, 2700, 3122, 3586, 4094, 4648, 5250, 5902, 6606, 7364, 8178, 9050, 9982, 10976, 12034, 13158, 14350, 15612, 16946, 18354, 19838, 21400, 23042, 24766, 26574, 28468
Offset: 0

Views

Author

Keywords

Comments

O. Haxel gave a construction procedure. The formulas are due to Wolfdieter Lang.

Crossrefs

Equals 2*A004006, partial sums of A014206, 2*(partial sums of A000124).

Programs

Formula

a(n) = n*(n^2 + 5)/3.
G.f.: 2*x*(1 - x + x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 05 2015
E.g.f.: x*(6 + 3*x + x^2)*exp(x)/3. - G. C. Greubel, Oct 12 2019
a(n) = A046127(n+1) - 2. - Jianing Song, Feb 03 2024

A162630 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

2, 4, 2, 6, 2, 4, 8, 4, 2, 6, 10, 6, 2, 4, 8, 12, 8, 4, 2, 6, 10, 14, 10, 6, 2, 4, 8, 12, 16, 12, 8, 4, 2, 6, 10, 14, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 16, 12, 8, 4, 2, 6, 10, 14, 18, 22, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 24, 20, 16, 12, 8, 4, 2
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2009

Keywords

Comments

The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 2p_(1/2), etc. The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 1, ... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 2, ... Other sequences that arise from this sequence are A A130517, A210983, A210984. - Omar E. Pol, Sep 02 2012

Examples

			A geometric shell model of the atomic nucleus:
   +---------------------- i ----------------------+
   |   +------------------ h ------------------+   |
   |   |   +-------------- g --------------+   |   |
   |   |   |   +---------- f ----------+   |   |   |
   |   |   |   |   +------ d ------+   |   |   |   |
   |   |   |   |   |   +-- p --+   |   |   |   |   |
   |   |   |   |   |   |   s   |   |   |   |   |   |
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |       |   |   |   |   |   |
   |   |   |   |   |       2       |   |   |   |   |
   |   |   |   |       4       2       |   |   |   |
   |   |   |       6       2       4       |   |   |
   |   |       8       4       2       6       |   |
   |      10       6       2       4       8       |
      12       8       4       2       6      10
  14      10       6       2       4       8      12
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |   +1/2+   |   |   |   |   |
   |   |   |   |   |   +--- 3/2 ---+   |   |   |   |
   |   |   |   |   +------- 5/2 -------+   |   |   |
   |   |   |   +----------- 7/2 -----------+   |   |
   |   |   +--------------- 9/2 ---------------+   |
   |   +------------------ 11/2 -------------------+
   +---------------------- 13/2 -----------------------
		

Crossrefs

Programs

  • Mathematica
    t[n_, 1] := n; t[n_, n_] := n-1;
    t[n_, k_] := Abs[2k - n - If[2k <= n+1, 2, 1]];
    2 Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2018 *)

Formula

a(n) = 2*A130517(n).
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = 2*(|2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n) + 3))).
a(n) = 2*(|2*n - t*t - 2*t - 3| + floor((2*n - t*t - t)/(t+3))) where t = floor((-1 + sqrt(8*n-7))/2). (End)

Extensions

Corrected by Omar E. Pol, Jul 13 2009
More terms from Omar E. Pol, Jul 14 2012
New name from Omar E. Pol, Sep 02 2012

A212124 Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

2, 6, 8, 14, 16, 20, 28, 32, 38, 40, 50, 58, 64, 68, 70, 82, 92, 100, 106, 110, 112, 126, 136, 142, 154, 162, 164, 168, 184
Offset: 1

Views

Author

Omar E. Pol, Jun 03 2012

Keywords

Comments

First differs from A213364 at a(12).

Examples

			Example 1: written as a triangle in which apparently row i is related to the (i-1)st level of nucleus. Triangle begins:
2;
6,     8;
14,   16,  20;
28,   32,  38,  40;
50,   58,  64,  68,  70;
82,   92, 100, 106, 110, 112;
126, 136, 142, 154, 162, 164, 168;
...
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. In this case note that row 4 has only one term. Triangle begins:
2;
6,     8;
14,   16,  20;
28,
32,   38,  40,  50;
58,   64,  68,  70,  82;
92,  100, 106, 110, 112, 126;
136, 142, 154, 162, 164, 168, 184;
...
First seven terms of right border give the "magic numbers" A018226.
		

References

  • M. Goeppert Mayer and J. Hans D. Jensen, Elementary Theory of Nuclear Shell Structure, J. Wiley and Sons, Inc. (1955).

Crossrefs

Partial sums of A212122. Other versions are A210984, A212014, A213364, A213374.

Formula

a(n) = 2*A212123(n).

A212121 Triangle read by rows in which row n lists the number of pairs of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 4, 2, 3, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 5, 3, 6, 4, 1, 2, 8
Offset: 1

Views

Author

Omar E. Pol, Jun 03 2012

Keywords

Comments

For another version see A213361. First differs from A213361 at a(12).
What defines this sequence? (This appears to be some sort of permutation of A130517 by shifting columns down or upwards in some randomized way.) - R. J. Mathar, Jul 22 2012

Examples

			Illustration of initial terms: two views of a three-dimensional shell model of nucleus.
.
.|-------------------------- j --------------------------|
.|                                                       |
.|   |---------------------- i ----------------------|   |
.|   |                                               |   |
.|   |   |------------------ h ------------------|   |   |
.|   |   |                                       |   |   |
.|   |   |   |-------------- g --------------|   |   |   |
.|   |   |   |                               |   |   |   |
.|   |   |   |   |---------- f ----------|   |   |   |   |
.|   |   |   |   |                       |   |   |   |   |
.|   |   |   |   |   |------ d ------|   |   |   |   |   |
.|   |   |   |   |   |               |   |   |   |   |   |
.|   |   |   |   |   |   |-- p --|   |   |   |   |   |   |
.|   |   |   |   |   |   |       |   |   |   |   |   |   |
.|   |   |   |   |   |   |   s   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   1   |   |   |   |   |   |   |
.|   |   |   |   |   |   2   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   1   |   |   |   |   |   |
.|   |   |   |   |   3   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   1   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   2   |   |   |   |   |
.|   |   |   |   4   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   2   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   3   |   |   |   |
.|   |   |   |   |   |   |   |   1   |   |   |   |   |   |
.|   |   |   5   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   4   |   |   |
.|   |   |   |   |   3   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   2   |   |   |   |   |
.|   |   |   |   |   |   |   1   |   |   |   |   |   |   |
.|   |   6   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   |   5   |   |
.|   |   |   |   4   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   3   |   |   |   |
.|   |   |   |   |   |   2   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   1   |   |   |   |   |   |
.|   7   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   5   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   3   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   |   |   6   |
.|   |   |   |   |   |   |   |   |   |   |   4   |   |   |
.|   |   |   |   |   |   |   1   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   2   |   |   |   |   |
.8   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |1/2|   |   |   |   |   |   |
.|   |   |   |   |   |   |           |   |   |   |   |   |
.|   |   |   |   |   |   |----3/2----|   |   |   |   |   |
.|   |   |   |   |   |                   |   |   |   |   |
.|   |   |   |   |   |--------5/2--------|   |   |   |   |
.|   |   |   |   |                           |   |   |   |
.|   |   |   |   |------------7/2------------|   |   |   |
.|   |   |   |                                   |   |   |
.|   |   |   |----------------9/2----------------    |   |
.|   |   |                                           |   |
.|   |   |-------------------11/2--------------------|   |
.|   |                                                   |
.|   |-----------------------13/2------------------------|
.|
.|---------------------------15/2-------------------------
.
..........................................................
.
.|-------------------------- j --------------------------|
.|                                                       |
.*   |---------------------- i ----------------------|   |
.|   |                                               |   |
.|   *   |------------------ h ------------------|   |   *
.|   |   |                                       |   |   |
.*   |   *   |-------------- f --------------|   |   *   |
.|   |   |   |                               |   |   |   |
.|   *   |   *   |---------- e ----------|   |   *   |   *
.|   |   |   |   |                       |   |   |   |   |
.*   |   *   |   *   |------ d ------|   |   *   |   *   |
.|   |   |   |   |   |               |   |   |   |   |   |
.|   *   |   *   |   *   |-- p --|   |   *   |   *   |   *
.|   |   |   |   |   |   |       |   |   |   |   |   |   |
.*   |   *   |   *   |   *   s   |   *   |   *   |   *   |
.|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   *   |   *   |   *   |   *   *   |   *   |   *   |   *
.|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.*   |   *   |   *   |   *   |1/2|   *   |   *   |   *   |
.|   |   |   |   |   |   |           |   |   |   |   |   |
.|   *   |   *   |   *   |----3/2----|   *   |   *   |   *
.|   |   |   |   |   |                   |   |   |   |   |
.*   |   *   |   *   |--------5/2--------|   *   |   *   |
.|   |   |   |   |                           |   |   |   |
.|   *   |   *   |------------7/2------------|   *   |   *
.|   |   |   |                                   |   |   |
.*   |   *   |----------------9/2----------------|   *   |
.|   |   |                                           |   |
.|   *   |-------------------11/2--------------------|   *
.|   |                                                   |
.*   |-----------------------13/2------------------------|
.|
.|---------------------------15/2-------------------------
.
Written as an irregular triangle in which row n represents the n-th shell of nucleus. Note that row 4 has only one term. Triangle begins:
1;
2, 1;
3, 1, 2;
4;
2, 3, 1, 5;
4, 3, 2, 1, 6;
5, 4, 3, 2, 1, 7;
5, 3, 6, 4, 1, 2, 8;
...
		

Crossrefs

Partial sums give A212123.

Formula

a(n) = A212122(n)/2.

A213364 Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

2, 6, 8, 14, 16, 20, 28, 32, 38, 40, 50, 56, 64, 66, 70, 82, 90, 94, 108, 118, 120, 126, 136, 148, 164, 170, 172, 180, 184
Offset: 1

Views

Author

Omar E. Pol, Jun 23 2012

Keywords

Comments

First differs from A212124 at a(12).

Examples

			Written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that row 4 has only one term. Triangle begins:
2;
6,     8;
14,   16,  20;
28;
32,   38,  40,  50;
56,   64,  66,  70,  82;
90,   94, 108, 118, 120, 126;
136, 148, 164, 170, 172, 180, 184;
...
First seven terms of right border give the "magic numbers" A018226
		

References

  • I. Talmi, Simple Models of Complex Nuclei, Hardwood Academic Publishers (1993).

Crossrefs

Partial sums of A213362. Other versions are A210984, A212014, A212124, A213374.

Formula

a(n) = 2*A213363(n).

A212122 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

2, 4, 2, 6, 2, 4, 8, 4, 6, 2, 10, 8, 6, 4, 2, 12, 10, 8, 6, 4, 2, 14, 10, 6, 12, 8, 2, 4, 16
Offset: 1

Views

Author

Omar E. Pol, Jun 03 2012

Keywords

Comments

First differs from A213362 at a(12).
The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 1f_(5/2), 2p_(1/2), 1g_(9/2), 1g_(7/2), 2d_(5/2), 2d_(3/2), etc. (see link section). The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 5, 1, 9, 7, 5, 3,... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 6, 2, 10, 8, 6, 4,... Other sequences that arise from this sequence are A212121, A212123, A212124. - Omar E. Pol, Sep 02 2012

Examples

			Illustration of initial terms: two views of a three-dimensional shell model of nucleus.
|-------------------------- j --------------------------|
|                                                       |
|   |---------------------- i ----------------------|   |
|   |                                               |   |
|   |   |------------------ h ------------------|   |   |
|   |   |                                       |   |   |
|   |   |   |-------------- g --------------|   |   |   |
|   |   |   |                               |   |   |   |
|   |   |   |   |---------- f ----------|   |   |   |   |
|   |   |   |   |                       |   |   |   |   |
|   |   |   |   |   |------ d ------|   |   |   |   |   |
|   |   |   |   |   |               |   |   |   |   |   |
|   |   |   |   |   |   |-- p --|   |   |   |   |   |   |
|   |   |   |   |   |   |       |   |   |   |   |   |   |
|   |   |   |   |   |   |   s   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |   |   |   |   |   4   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   2   |   |   |   |   |   |
|   |   |   |   |   6   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   4   |   |   |   |   |
|   |   |   |   8   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   4   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   6   |   |   |   |
|   |   |   |   |   |   |   |   2   |   |   |   |   |   |
|   |   |  10   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   8   |   |   |
|   |   |   |   |   6   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   4   |   |   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |  12   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |  10   |   |
|   |   |   |   8   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   6   |   |   |   |
|   |   |   |   |   |   4   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   2   |   |   |   |   |   |
|  14   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |  10   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   6   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |  12   |
|   |   |   |   |   |   |   |   |   |   |   8   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   4   |   |   |   |   |
16  |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |1/2|   |   |   |   |   |   |
|   |   |   |   |   |   |           |   |   |   |   |   |
|   |   |   |   |   |   |----3/2----|   |   |   |   |   |
|   |   |   |   |   |                   |   |   |   |   |
|   |   |   |   |   |--------5/2--------|   |   |   |   |
|   |   |   |   |                           |   |   |   |
|   |   |   |   |------------7/2------------|   |   |   |
|   |   |   |                                   |   |   |
|   |   |   |----------------9/2----------------|   |   |
|   |   |                                           |   |
|   |   |-------------------11/2--------------------|   |
|   |                                                   |
|   |-----------------------13/2------------------------|
|
|---------------------------15/2-------------------------
.
..........................................................
.
|-------------------------- j --------------------------|
*                                                       |
*   |---------------------- i ----------------------|   |
|   *                                               |   *
|   *   |------------------ h ------------------|   |   *
*   |   *                                       |   *   |
*   |   *   |-------------- f --------------|   |   *   |
|   *   |   *                               |   *   |   *
|   *   |   *   |---------- e ----------|   |   *   |   *
*   |   *   |   *                       |   *   |   *   |
*   |   *   |   *   |------ d ------|   |   *   |   *   |
|   *   |   *   |   *               |   *   |   *   |   *
|   *   |   *   |   *   |-- p --|   |   *   |   *   |   *
*   |   *   |   *   |   *       |   *   |   *   |   *   |
*   |   *   |   *   |   *   s   |   *   |   *   |   *   |
|   *   |   *   |   *   |   *   *   |   *   |   *   |   *
|   *   |   *   |   *   |   *   *   |   *   |   *   |   *
*   |   *   |   *   |   *   |   |   *   |   *   |   *   |
*   |   *   |   *   |   *   |1/2|   *   |   *   |   *   |
|   *   |   *   |   *   |           |   *   |   *   |   *
|   *   |   *   |   *   |----3/2----|   *   |   *   |   *
*   |   *   |   *   |                   |   *   |   *   |
*   |   *   |   *   |--------5/2--------|   *   |   *   |
|   *   |   *   |                           |   *   |   *
|   *   |   *   |------------7/2------------|   *   |   *
*   |   *   |                                   |   *   |
*   |   *   |----------------9/2----------------|   *   |
|   *   |                                           |   *
|   *   |-------------------11/2--------------------|   *
*   |                                                   |
*   |-----------------------13/2------------------------|
|
|---------------------------15/2-------------------------
.
Written as an irregular triangle in which row n represents the n-th shell of nucleus. Note that row 4 has only one term. Triangle begins:
2;
4,   2;
6,   2,  4;
8;
4,   6,  2, 10;
8,   6,  4,  2, 12;
10,  8,  6,  4,  2, 14;
10,  6, 12,  8,  2,  4, 16;
...
		

References

  • M. Goeppert Mayer and J. Hans D. Jensen, Elementary Theory of Nuclear Shell Structure, J. Wiley and Sons, Inc. (1955).

Crossrefs

Row sums give A210842. Partial sums give A212124.
Other versions are A162630, A212012, A213362, A213372.

Formula

a(n) = 2*A212121(n).

A212014 Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

2, 6, 8, 14, 18, 20, 28, 34, 38, 40, 50, 58, 64, 68, 70, 82, 92, 100, 106, 110, 112, 126, 138, 148, 156, 162, 166, 168, 184, 198, 210, 220, 228, 234, 238, 240, 258, 274, 288, 300, 310, 318, 324, 328, 330, 350, 368, 384, 398, 410, 420, 428, 434, 438, 440, 462, 482, 500, 516, 530, 542, 552, 560, 566, 570, 572
Offset: 1

Views

Author

Omar E. Pol, Jul 15 2012

Keywords

Examples

			Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus. Triangle begins:
    2;
    6,   8;
   14,  18,  20;
   28,  34,  38,  40;
   50,  58,  64,  68,  70;
   82,  92, 100, 106, 110, 112;
  126, 138, 148, 156, 162, 166, 168;
  ...
Column 1 gives positive terms of A033547. Right border gives positive terms of A007290.
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. In this case note that row 4 has only one term. Triangle begins:
    2;
    6,   8;
   14,  18,  20;
   28;
   34,  38,  40,  50;
   58,  64,  68,  70,  82;
   92, 100, 106, 110, 112, 126;
  138, 148, 156, 162, 166, 168, 184;
  ...
First seven terms of right border give the "magic numbers" A018226.
		

References

  • M. Goeppert Mayer, Nuclear configurations in the spin-orbit coupling model. I. Empirical evidence, Phys. Rev. 78: 16 (1950). II. Theoretical considerations, Phys. Rev. 78: 22 (1950).

Crossrefs

Partial sums of A212012. Other versions are A210984, A212124, A213364, A213374.

Programs

  • Mathematica
    2*Accumulate[Flatten[Range[Range[15], 1, -1]]] (* Paolo Xausa, Mar 14 2025 *)

Formula

a(n) = 2*A212013(n).
Previous Showing 11-20 of 36 results. Next