cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A244880 Number of magic labelings of the cycle-of-loops graph LOOP X C_8 having magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph.

Original entry on oeis.org

1, 47, 650, 4726, 23219, 87677, 274132, 743724, 1806597, 4016683, 8306078, 16168802, 29904823, 52936313, 90209192, 148694104, 238002057, 371131047, 565361074, 843316046, 1234212155, 1775313397, 2513615996, 3507784580, 4830364045, 6570292131, 8835738822, 11757299770, 15491572031
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Maple
    A244880:=n->(630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630: seq(A244880(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    CoefficientList[Series[(1 + 38 (x + x^5) + 263 (x^2 + x^4) + 484 x^3 + x^6)/(1 - x)^9, {x, 0, 28}], x] (* Michael De Vlieger, Sep 15 2017 *)
  • PARI
    Vec((1 + 6*x + x^2)*(1 + 32*x + 70*x^2 + 32*x^3 + x^4) / (1 - x)^9 + O(x^30)) \\ Colin Barker, Jan 12 2017

Formula

G.f.: (1+38*(x+x^5)+263*(x^2+x^4)+484*x^3+x^6) / (1-x)^9.
From Colin Barker, Jan 12 2017: (Start)
a(n) = (630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
(326*n^2-195*n+142)*a(n) +(-652*n^2-652*n-10725)*a(n-1) +(326*n^2+847*n+663)*a(n-2) +2*(-165*n^2-165*n-71)=0. - R. J. Mathar, Mar 10 2025

Extensions

Name corrected by David J. Seal, Sep 13 2017

A200763 T(n,k)=Number of 0..k arrays x(0..n-1) of n elements with nondecreasing average value.

Original entry on oeis.org

2, 3, 3, 4, 6, 4, 5, 10, 11, 5, 6, 15, 23, 19, 6, 7, 21, 42, 51, 32, 7, 8, 28, 69, 113, 110, 53, 8, 9, 36, 106, 219, 297, 233, 87, 9, 10, 45, 154, 388, 679, 767, 488, 142, 10, 11, 55, 215, 638, 1387, 2070, 1957, 1013, 231, 11, 12, 66, 290, 995, 2583, 4874, 6235, 4947, 2088
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Table starts
..2...3....4.....5......6......7.......8.......9.......10.......11........12
..3...6...10....15.....21.....28......36......45.......55.......66........78
..4..11...23....42.....69....106.....154.....215......290......381.......489
..5..19...51...113....219....388.....638.....995.....1483.....2133......2975
..6..32..110...297....679...1387....2583....4500.....7410....11669.....17687
..7..53..233...767...2070...4874...10283...20012....36412....62780....103412
..8..87..488..1957...6235..16919...40437...87914...176767...333702....597390
..9.142.1013..4947..18608..58198..157577..382720...850389..1757813...3420112
.10.231.2088.12419..55148.198807..609826.1654657..4062796..9195619..19445435
.11.375.4278.31006.162532.675372.2347039.7114665.19304047.47842607.109955586

Examples

			Some solutions for n=8 k=8
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....1....1....4....3....3....0....3....2....3....2....5....3....1....0....2
..2....7....6....2....1....2....3....2....1....4....7....3....4....5....3....6
..2....3....4....7....7....7....5....6....1....6....3....3....5....2....8....4
..4....7....6....6....4....4....4....5....1....6....4....3....3....7....3....4
..7....4....8....4....5....6....2....4....6....7....6....8....8....7....7....6
..5....5....5....6....6....5....4....7....6....4....4....4....7....4....6....8
		

Crossrefs

Column 2 is A001911(n+1)
Column 7 is A200707
Row 2 is A000217(n+1)
Row 3 is A019298(n+1)

A236364 Sum of all the middle parts in the partitions of 3n into 3 parts.

Original entry on oeis.org

1, 5, 18, 40, 80, 135, 217, 320, 459, 625, 836, 1080, 1378, 1715, 2115, 2560, 3077, 3645, 4294, 5000, 5796, 6655, 7613, 8640, 9775, 10985, 12312, 13720, 15254, 16875, 18631, 20480, 22473, 24565, 26810, 29160, 31672, 34295, 37089, 40000, 43091, 46305, 49708
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 23 2014

Keywords

Examples

			Add second columns for a(n):
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
------------------------------------------------------------------------
    1           5          18           40          80      ..   a(n)
		

Crossrefs

Programs

  • Maple
    A236364:=n->n*(n+1)*(2*n+1)/6 - floor((n-1)/2) * (4*floor((n-1)/2)^2 + (3*n+6)*floor((n-1)/2) - 6*n^2 + 3*n + 2)/6; seq(A236364(n), n=1..100);
  • Mathematica
    Table[Sum[i^2, {i, n}] + Sum[(n + i) (n - 2 i), {i, Floor[(n - 1)/2]}], {n, 100}]
    CoefficientList[Series[(x^4 + 3 x^3 + 7 x^2 + 3 x + 1)/ ((x - 1)^4 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 18 2014 *)
  • PARI
    Vec(x*(x^4+3*x^3+7*x^2+3*x+1)/((x-1)^4*(x+1)^2) + O(x^100)) \\ Colin Barker, Jan 23 2014

Formula

a(n) = A000330(n) + Sum_{i=1..floor((n-1)/2)} (n + i)*(n - 2i).
a(n) = n*(n+1)*(2*n+1)/6 - floor((n-1)/2) * (4*floor((n-1)/2)^2 + 3*(n+2)*floor((n-1)/2) - 6*n^2 + 3*n + 2)/6.
G.f.: x*(x^4+3*x^3+7*x^2+3*x+1)/((x-1)^4*(x+1)^2). - Joerg Arndt, Jan 23 2014
a(n) = (n*(3-3*(-1)^n+10*n^2))/16. - Colin Barker, Jan 23 2014
a(n) = (n^3 + ceiling(n/2)^3 + floor(n/2)^3)/2. - Wesley Ivan Hurt, Apr 15 2016
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6). - Wesley Ivan Hurt, Nov 19 2021

Extensions

Name clarified by Wesley Ivan Hurt, Apr 16 2016

A289992 Number of magic labelings of the prism graph I X C_8 having magic sum n.

Original entry on oeis.org

1, 49, 746, 6122, 34067, 144963, 506772, 1524628, 4074949, 9898229, 22220990, 46695870, 92769495, 175610631, 318756136, 557659432, 944355593, 1553488697, 2489980818, 3898657938, 5976186139, 8985711691, 13274641084, 19296041660, 27634190285
Offset: 0

Views

Author

David J. Seal, Sep 13 2017

Keywords

Crossrefs

Formula

a(n) = A244880(n) + 2*Sum_{i=0..n-1} A244880(i).
From Colin Barker, Sep 13 2017: (Start)
G.f.: (1 + x)*(1 + 6*x + x^2)*(1 + 32*x + 70*x^2 + 32*x^3 + x^4) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>9. (End)
[Proof of the g.f. follows from the convolution formula and insertion of the g.f. A244880(x): Sum_{n>=0} a(n)x^n = Sum_{n>=0} A244880(n)*x^n +2*Sum_{n>=0} Sum_{i=0..n-1} A244880(i)*x^n = A244880(x) +2*Sum_{i>=0} Sum_{n>=i+1} A244880(i)*x^n = A244880(x) +2*Sum_{i>=0} A244880(i)*x^(i+1) Sum_{n>=0} x^n = A244880(x)+2*A244880(x)*x/(1+x) = A244880(x)*(1+2*x/(1-x)). R. J. Mathar, Mar 09 2025]

A292281 Number of magic labelings of the prism graph I X C_6 having magic sum n.

Original entry on oeis.org

1, 20, 167, 867, 3322, 10309, 27410, 64770, 139479, 278674, 523457, 933725, 1594008, 2620411, 4168756, 6444020, 9711165, 14307456, 20656363, 29283143, 40832198, 56086305, 75987814, 101661910, 134442035, 175897566, 227863845, 292474657, 372197252, 469870007, 588742824
Offset: 0

Views

Author

David J. Seal, Sep 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := SeriesCoefficient[(1 + 11 x + 24 x^2 + 11 x^3 + x^4)/(1 - x)^7, {x, 0, n}]; Table[f[n] + 2 Sum[f[i], {i, 0, n - 1}], {n, 0, 24}] (* Michael De Vlieger, Sep 15 2017 *)

Formula

a(n) = A244879(n) + 2*Sum_{i=0..n-1} A244879(i).
From Colin Barker, Sep 13 2017: (Start)
G.f.: (1 + x)*(1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)
[Proof of the g.f. follows from the g.f. of A244879 with the resummation demonstrated in A289992: g.f. = A244879(x)*(1+2*x/(1-x)). - R. J. Mathar, Mar 09 2025]

A380853 Number of ways to place six distinct positive integers on a triangle, three on the corners and three on the sides such that the sum of the three values on each side is n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 13, 14, 25, 37, 47, 58, 89, 98, 126, 159, 188, 219, 276, 303, 362, 423, 478, 536, 633, 688, 781, 881, 973, 1068, 1211, 1301, 1443, 1589, 1724, 1866, 2066, 2202, 2396, 2598, 2790, 2986, 3250, 3439, 3699, 3967, 4219, 4480, 4819, 5071
Offset: 1

Views

Author

Derek Holton and Alex Holton, Feb 06 2025

Keywords

Comments

Solutions differing by only rotation or reflections are not counted separately.
If the numbers do not need to be distinct and rotations and reflections are counted separately we get A019298(n-2). If the numbers do not need to be distinct but rotations and reflections do not count separately we get A006918(n-2). If the six numbers must be distinct and reflections and rotations count separately we get 6*a(n). - R. J. Mathar, Feb 27 2025

Examples

			The a(9) = 1 solution is:
       1
     5   6
   3   4   2
		

Crossrefs

Programs

Formula

G.f.: x^9*(1 + 4*x + 8*x^2 + 16*x^3 + 18*x^4 + 18*x^5 + 15*x^6 + 10*x^7)/((1 - x)^4*(1 + 2*x + 2*x^2 + x^3)^2*(1 + x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6)). - Stefano Spezia, Feb 08 2025
A380105(n) = a(n)-a(n-3). - R. J. Mathar, Mar 13 2025

A053493 Number of symmetric 4 X 4 matrices of nonnegative integers with every row and column adding to n.

Original entry on oeis.org

1, 10, 56, 214, 641, 1620, 3616, 7340, 13825, 24510, 41336, 66850, 104321, 157864, 232576, 334680, 471681, 652530, 887800, 1189870, 1573121, 2054140, 2651936, 3388164, 4287361, 5377190, 6688696, 8256570, 10119425, 12320080, 14905856, 17928880, 21446401
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000; definition revised Jul 06 2014

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Prop. 4.6.21, p. 235, G_4(lambda).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+4x+10x^2+4x^3+x^4)/((1-x)^7(1+x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{6,-14,14,0,-14,14,-6,1},{1,10,56,214,641,1620,3616,7340},30] (* Harvey P. Dale, Oct 31 2011 *)
  • PARI
    Vec((1+4*x+10*x^2+4*x^3+x^4) / ((1-x)^7*(1+x)) + O(x^40)) \\ Colin Barker, Jan 14 2017

Formula

G.f.: (1+4*x+10*x^2+4*x^3+x^4)/((1-x)^7*(1+x)).
a(0)=1, a(1)=10, a(2)=56, a(3)=214, a(4)=641, a(5)=1620, a(6)=3616, a(7)=7340, a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8). - Harvey P. Dale, Oct 31 2011
a(n) = (9*(31+(-1)^n) + 768*n + 928*n^2 + 624*n^3 + 238*n^4 + 48*n^5 + 4*n^6) / 288. - Colin Barker, Jan 14 2017

A053494 Number of symmetric 5 X 5 matrices of nonnegative integers with every row and column adding to n.

Original entry on oeis.org

1, 26, 348, 2698, 14751, 62781, 222190, 681460, 1865715, 4655535, 10756921, 23290026, 47700173, 93104473, 174248451, 314246511, 548380980, 929209095, 1533389605, 2470568045, 3894914166, 6019752376, 9136114923, 13635769173, 20039850376, 29033765566
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Prop. 4.6.21, p. 235, G_5(lambda).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+21x+222x^2+1082x^3+3133x^4+5722x^5+7013x^6+5722x^7+3133x^8+1082x^9+222x^10+21x^11+x^12)/((1-x)^11(1+x)^6),{x,0,30}],x] (* or *) LinearRecurrence[ {5,-4,-20,40,16,-100,44,110,-110,-44,100,-16,-40,20,4,-5,1},{1,26,348,2698,14751,62781,222190,681460,1865715,4655535,10756921,23290026,47700173,93104473,174248451,314246511,548380980},30] (* Harvey P. Dale, Mar 05 2023 *)
  • PARI
    Vec((1 + 21*x + 222*x^2 + 1082*x^3 + 3133*x^4 + 5722*x^5 + 7013*x^6 + 5722*x^7 + 3133*x^8 + 1082*x^9 + 222*x^10 + 21*x^11 + x^12) / ((1 - x)^11*(1 + x)^6) + O(x^30)) \\ Colin Barker, Jan 14 2017

Formula

G.f.: (1 + 21*x + 222*x^2 + 1082*x^3 + 3133*x^4 + 5722*x^5 + 7013*x^6 + 5722*x^7 + 3133*x^8 + 1082*x^9 + 222*x^10 + 21*x^11 + x^12) / ((1-x)^11*(1+x)^6).
a(n) = (189*(59981+5555*(-1)^n) + 18*(2345165+65331*(-1)^n)*n + (76615494+689850*(-1)^n)*n^2 + 40*(2138179+6237*(-1)^n)*n^3 + (63277966+47250*(-1)^n)*n^4 + 1260*(25421+3*(-1)^n)*n^5 + 11171664*n^6 + 2644080*n^7 + 405954*n^8 + 36500*n^9 + 1460*n^10) / 12386304. - Colin Barker, Jan 14 2017

Extensions

Revised definition, Jul 06 2014

A212683 Number of (w,x,y,z) with all terms in {1,...,n} and |x-y| = w + |y-z|.

Original entry on oeis.org

0, 0, 2, 8, 22, 46, 84, 138, 212, 308, 430, 580, 762, 978, 1232, 1526, 1864, 2248, 2682, 3168, 3710, 4310, 4972, 5698, 6492, 7356, 8294, 9308, 10402, 11578, 12840, 14190, 15632, 17168, 18802, 20536, 22374, 24318, 26372, 28538, 30820
Offset: 0

Views

Author

Clark Kimberling, May 24 2012

Keywords

Comments

For a guide to related sequences, see A211795.
Also the number of (w,x,y) with all terms in {0,...,n-1} and |w-x| < |x-y|, see A212959. - Clark Kimberling, Jun 02 2012

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[x - y] == w + Abs[y - z], s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212683 *)
    %/2  (* A019298 *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 2, 8, 22}, 40]

Formula

a(n) = 2*A019298(n-1) for n>=1.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
G.f.: (2*x^2 + 2*x^3 + 2*x^4)/(1 - 3*x + 2*x^2 + 2*x^3 - 3*x^4 + x^5).
a(n) + A212684(n) = n^3. - Clark Kimberling, Jun 02 2012 [corrected by Jason Yuen, Aug 19 2025]
a(n) = (2*n^3 - 3*n^2 + 2*n - (n mod 2))/4. - Ayoub Saber Rguez, Sep 02 2021

A236758 Number of partitions of 3*n into 3 parts with smallest part prime.

Original entry on oeis.org

0, 1, 3, 6, 10, 14, 20, 25, 32, 37, 45, 51, 61, 68, 79, 86, 98, 106, 120, 129, 144, 153, 169, 179, 196, 206, 223, 233, 251, 262, 282, 294, 315, 327, 348, 360, 382, 395, 418, 431, 455, 469, 495, 510, 537, 552, 580, 596, 625, 641, 670, 686, 716, 733, 764, 781
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 30 2014

Keywords

Examples

			Count the primes in last column for a(n):
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
---------------------------------------------------------------------
    0           1           3           6           10      ..   a(n)
		

Crossrefs

Cf. A019298, A235988, A236364, A236762, A010051 (for function isprime).

Programs

  • Maple
    with(numtheory); A236758:=n->sum((pi(n) - pi(n-1)) * (2*n - 2*i + 1 - floor((n - i + 1)/2)), i=1..n); seq(A236758(n), n=1..100);
  • Mathematica
    Table[Sum[(PrimePi[i] - PrimePi[i - 1]) (2 n - 2 i + 1 - Floor[(n - i + 1)/2]), {i, n}], {n, 100}]
  • Sage
    def a(n): return sum(1 for L in Partitions(3*n,length=3).list() if is_prime(L[2]))

Formula

a(n) = Sum_{i=1..n} A010051(i) * (2*n - 2*i + 1 - floor((n - i + 1)/2)).
Previous Showing 11-20 of 37 results. Next