cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 63 results. Next

A334367 Decimal expansion of Sum_{k>=0} 1/(4*k+2)!!.

Original entry on oeis.org

5, 2, 1, 0, 9, 5, 3, 0, 5, 4, 9, 3, 7, 4, 7, 3, 6, 1, 6, 2, 2, 4, 2, 5, 6, 2, 6, 4, 1, 1, 4, 9, 1, 5, 5, 9, 1, 0, 5, 9, 2, 8, 9, 8, 2, 6, 1, 1, 4, 8, 0, 5, 2, 7, 9, 4, 6, 0, 9, 3, 5, 7, 6, 4, 5, 2, 8, 0, 2, 2, 5, 0, 8, 9, 0, 2, 3, 3, 5, 9, 2, 3, 1, 7, 0, 6, 4, 4, 5, 4, 2, 7, 4, 1, 8, 8, 5, 9, 3, 4, 8, 8, 2, 2, 1, 4, 2, 3, 9, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Comments

This constant is transcendental.

Examples

			1/(2^1*1!) + 1/(2^3*3!) + 1/(2^5*5!) + ... = 0.52109530549374736162242...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[1/2], 10, 110] [[1]]
  • PARI
    sinh(1/2) \\ Michel Marcus, Apr 25 2020

Formula

Equals sinh(1/2).
Equals (1/2) * Product_{k>=1} 1 + 1/(2*k*Pi)^2. - Amiram Eldar, Jul 16 2020

A019778 Decimal expansion of sqrt(e)/5.

Original entry on oeis.org

3, 2, 9, 7, 4, 4, 2, 5, 4, 1, 4, 0, 0, 2, 5, 6, 2, 9, 3, 6, 9, 7, 3, 0, 1, 5, 7, 5, 6, 2, 8, 3, 2, 7, 1, 4, 3, 3, 0, 7, 5, 5, 2, 2, 0, 1, 4, 2, 0, 2, 9, 6, 0, 2, 3, 1, 5, 0, 1, 5, 8, 6, 2, 3, 2, 8, 1, 3, 2, 2, 0, 4, 2, 3, 8, 8, 4, 3, 1, 2, 1, 7, 2, 6, 5, 5, 5, 3, 0, 4, 0, 1, 1, 2, 7, 3, 3, 2, 8
Offset: 0

Views

Author

Keywords

Examples

			0.32974425414002562936973015756283271433075522014202...
		

Crossrefs

Cf. A019774.

Programs

  • Mathematica
    RealDigits[Sqrt[E]/5,10,120][[1]] (* Harvey P. Dale, Aug 25 2019 *)

Formula

Equals 0.1 * 2*sqrt(e) = 0.1 * Sum_{k>=0} (2*k+1)/(2^k * k!). - Amiram Eldar, Aug 07 2020

A092618 Decimal expansion of e^(-1/5).

Original entry on oeis.org

8, 1, 8, 7, 3, 0, 7, 5, 3, 0, 7, 7, 9, 8, 1, 8, 5, 8, 6, 6, 9, 9, 3, 5, 5, 0, 8, 6, 1, 9, 0, 3, 9, 4, 2, 4, 3, 5, 8, 5, 9, 1, 2, 5, 6, 2, 6, 9, 0, 1, 5, 6, 7, 2, 4, 7, 8, 0, 2, 8, 7, 6, 1, 6, 1, 6, 5, 0, 8, 7, 7, 7, 4, 0, 2, 4, 9, 1, 0, 9, 8, 6, 2, 3, 4, 5, 7, 2, 0, 4, 0, 8, 4, 3, 2, 1, 4, 2, 1, 7, 9, 0, 7, 1, 5
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.81873075307798
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Power[E, (-5)^-1],10,120][[1]] (* Harvey P. Dale, Jan 27 2012 *)

A092750 Decimal expansion of e^(-1/7).

Original entry on oeis.org

8, 6, 6, 8, 7, 7, 8, 9, 9, 7, 5, 0, 1, 8, 1, 6, 2, 7, 5, 0, 2, 9, 3, 2, 4, 7, 6, 5, 8, 1, 6, 0, 2, 5, 6, 3, 1, 9, 6, 5, 3, 1, 9, 4, 7, 9, 5, 4, 8, 1, 3, 3, 3, 9, 5, 5, 8, 8, 4, 5, 0, 5, 7, 3, 4, 1, 3, 8, 9, 1, 0, 3, 7, 3, 7, 7, 7, 2, 6, 7, 5, 7, 0, 3, 0, 1, 3, 1, 5, 5, 8, 7, 7, 0, 2, 6, 9, 8, 8, 1, 7, 2, 8, 3, 2, 9, 9, 9, 6
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.866877899750...
		

Crossrefs

Programs

  • Maple
    evalf(1/exp(1/7), 124);  # Alois P. Heinz, Apr 04 2020
  • Mathematica
    RealDigits[N[Exp[-1/7], 112]][[1]] (* Georg Fischer, Apr 04 2020 *)

Extensions

a(104) corrected by Georg Fischer, Apr 04 2020

A181180 Decimal expansion of exp(exp(-1/2)).

Original entry on oeis.org

1, 8, 3, 4, 0, 5, 7, 3, 7, 9, 1, 9, 8, 4, 8, 7, 4, 5, 3, 2, 3, 7, 8, 3, 6, 5, 6, 2, 2, 4, 2, 7, 7, 1, 2, 1, 1, 1, 5, 4, 3, 0, 3, 0, 7, 1, 4, 6, 8, 1, 7, 9, 7, 0, 5, 4, 8, 7, 3, 0, 9, 3, 1, 8, 7, 7, 6, 0, 0, 9, 6, 7, 0, 8, 7, 7, 4, 1, 7, 6, 6, 4, 8, 8, 6, 3, 0, 7, 3, 8, 7, 2, 3, 6, 1, 3, 8, 2, 2, 0, 2, 2, 0, 2, 2
Offset: 1

Views

Author

Geoffrey Caveney, Oct 09 2010

Keywords

Comments

The real number y such that y = exp(xy^-x) is a maximum, at x=exp(1/2).
y=1.8340573791984...

Crossrefs

Cf. A092605 (decimal expansion of exp(-1/2)), A019774 (decimal expansion of exp(1/2)). - Klaus Brockhaus, Oct 09 2010

Programs

Extensions

More terms from Klaus Brockhaus, Oct 09 2010

A227569 Decimal expansion of maximal value of function F[a(n); b(n)] for pairs of complements a(n) and b(n) of natural numbers A000027, where a(n) = odd numbers (A005408) and b(n) = even numbers (A005843); see Comments for the definition of function F[a(n); b(n)].

Original entry on oeis.org

2, 0, 5, 9, 4, 0, 7, 4, 0, 5, 3, 4, 2, 5, 7, 6, 1, 4, 4, 5, 3, 9, 4, 7, 5, 4, 9, 9, 2, 3, 3, 2, 7, 8, 6, 1, 2, 9, 7, 7, 2, 5, 4, 7, 2, 6, 3, 3, 5, 3, 4, 0, 2, 0, 9, 2, 9, 9, 7, 1, 8, 7, 7, 9, 8, 0, 5, 4, 4, 2, 8, 1, 9, 6, 8, 4, 6, 1, 3, 5, 3, 5, 7, 4, 8, 1, 8, 5, 7, 4, 4, 8, 3, 4, 9, 7, 8, 2, 8, 3, 1, 5, 0, 1, 5
Offset: 1

Views

Author

Jaroslav Krizek, Jul 16 2013

Keywords

Comments

Apart from the first digit, the same as A143280. The sum of the reciprocals of the double factorial numbers, Sum_{n>=1} 1/n!! = Sum_{n>=2} n!!/n!. - Robert G. Wilson v, Jun 27 2015
Definition of function F[a(n); b(n)]: Let a(n) and b(n) is pair of complements of natural numbers (A000027) with a(1) < a(2) < a(3) < ... and b(1) < b(2) < b(3) < ..., then F[a(n); b(n)] = F[a(n)] + F[b(n)]; where F[a(n)] = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... and F[b(n)] = 1/b(1) + 1/b(1)b(2) + 1/b(1)b(2)b(3) + ...
Value of function F[a(n); b(n)] is real number c = a + b, where a = real number whose Engel expansion is sequence a(n) and b = real number whose Engel expansion is sequence b(n). See A006784 for definition of Engel expansion.
Example for a(n) = odd numbers (A005408) and b(n) = even numbers (A005843): c = 2.059407... = a + b, where a = 1.410686... (A060196) and b = 0.648721... (A019774 - 1).
Example for a(n) = nonprime numbers (A018252) and b(n) = primes (A000040): c = 2.002747... = a + b, where a = 1.297516... and b = 0.705230... (A064648).
Conjecture: there are no pairs of complements a(n) and b(n) such that F[a(n); b(n)] = 2.
e - 1 <= F[a(n); b(n)] <= sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) - 1.
1.71828182... (A091131) <= F[a(n); b(n)] <= 2.05940740....

Examples

			2.05940740534257614453947549923327861297725472633534020929971877980544281968...
		

Crossrefs

Cf. A000027, A005408, A005843, A091131 (e-1), A006882 (n!!), A143280 (m(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(112)); R:= RealField(); -1 + Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2)) ); // G. C. Greubel, Apr 01 2019
    
  • Mathematica
    RealDigits[Sqrt[E] -1 + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *)
    RealDigits[Sum[1/n!!, {n, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *)
  • PARI
    default(realprecision, 100); exp(1/2) - 1 + sqrt(exp(1)*Pi/2)*(1-erfc(1/sqrt(2))) \\ G. C. Greubel, Apr 01 2019
    
  • Sage
    numerical_approx(-1 + exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=112) # G. C. Greubel, Apr 01 2019

A271476 Total number of burnt pancakes flipped using the Min-bar(n) greedy algorithm.

Original entry on oeis.org

1, 10, 75, 628, 6325, 75966, 1063615, 17017960, 306323433, 6126468850, 134782314931, 3234775558620, 84104164524445, 2354916606684838, 70647498200545575, 2260719942417458896, 76864478042193603025, 2767121209518969709530, 105150605961720848962843, 4206024238468833958514500
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2016

Keywords

Crossrefs

Programs

  • GAP
    List([1..20],n->-n+2^n*Factorial(n)*Sum([0..n-1],k->1/(2^k*Factorial(k)))); # Muniru A Asiru, Aug 02 2018
  • Maple
    seq(coeff(series(factorial(n)*exp(x)*(x+2*x^2)/(1-2*x), x,n+1),x,n),n=1..20); # Muniru A Asiru, Aug 02 2018
  • Mathematica
    Table[2^n*n! Sum[1/(2^k*k!), {k, 0, n - 1}] - n, {n, 20}] (* Michael De Vlieger, May 25 2016 *)
  • PARI
    a(n) = 2^n * n! * sum(k=0, n-1, 1/(2^k*k!)) - n;
    vector(20, n, a(n))  \\ Gheorghe Coserea, Apr 25 2016
    
  • PARI
    x='x+O('x^99); Vec(serlaplace((x+2*x^2)/(1-2*x)*exp(x))) \\ Altug Alkan, Aug 01 2018
    

Formula

a(n) = -n + 2^n * n! * Sum_{k=0..n-1} 1/(2^k*k!). (see Sawada link) - Gheorghe Coserea, Apr 25 2016
From Altug Alkan, Aug 01 2018: (Start)
a(n) = A093302(n)/2 for n >= 1.
a(n) = floor(e^(1/2)*n!*2^n)-n-1.
E.g.f.: exp(x)*(x+2*x^2)/(1-2*x). (End)

Extensions

More terms from Gheorghe Coserea, Apr 25 2016

A306486 Number of squares in the interval [e^(n-1), e^n).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 36, 58, 96, 159, 262, 431, 712, 1172, 1934, 3189, 5256, 8667, 14289, 23559, 38841, 64039, 105583, 174076, 287003, 473188, 780155, 1286258, 2120681, 3496412, 5764609, 9504233, 15669832, 25835185, 42595018, 70227313, 115785266
Offset: 0

Views

Author

Alexei Kourbatov, Feb 18 2019

Keywords

Comments

The lower endpoint e^(n-1) is included; the upper endpoint is not included. The terms a(0) to a(8) coincide with the Fibonacci numbers.

Examples

			Between exp(2) and exp(3) there are two squares, namely, 9 and 16; therefore, a(3)=2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f(n)-f(n-1))(i-> ceil(exp(i/2))):
    seq(a(n), n=0..44);  # Alois P. Heinz, Feb 18 2019
  • PARI
    a(n)=ceil(sqrt(exp(n)))-ceil(sqrt(exp(n-1)));
    for(n=0,50,print1(a(n)", "))

Formula

a(n) = ceiling(sqrt(exp(n))) - ceiling(sqrt(exp(n-1))).
From Alois P. Heinz, Feb 19 2019: (Start)
Lim_{n->oo} a(n+1)/a(n) = sqrt(e) = 1.64872127... = A019774.
a(n) = A005181(n+1) - A005181(n). (End)
a(n) = (1-1/sqrt(e))*e^(n/2)+O(1) ~ 0.39346934...*e^(n/2) ~ A290506*e^(n/2). - Alexei Kourbatov, Feb 20 2019

A019784 Decimal expansion of sqrt(e)/11.

Original entry on oeis.org

1, 4, 9, 8, 8, 3, 7, 5, 1, 8, 8, 1, 8, 2, 9, 8, 3, 1, 5, 3, 1, 6, 9, 5, 5, 2, 6, 1, 6, 4, 9, 2, 3, 9, 6, 1, 0, 5, 9, 4, 3, 4, 1, 9, 0, 9, 7, 3, 6, 4, 9, 8, 1, 9, 2, 3, 4, 0, 9, 8, 1, 1, 9, 2, 4, 0, 0, 6, 0, 0, 9, 2, 8, 3, 5, 8, 3, 7, 7, 8, 2, 6, 0, 2, 9, 7, 9, 6, 8, 3, 6, 4, 1, 4, 8, 7, 8, 7, 6
Offset: 0

Views

Author

Keywords

Examples

			0.149883751881829831531695526164923961...
		

Crossrefs

Cf. A019774.

Programs

A019790 Decimal expansion of sqrt(e)/17.

Original entry on oeis.org

0, 9, 6, 9, 8, 3, 6, 0, 4, 1, 5, 8, 8, 3, 1, 0, 6, 7, 4, 6, 1, 6, 8, 5, 3, 4, 0, 4, 5, 9, 6, 5, 6, 6, 8, 0, 6, 8, 5, 5, 1, 6, 2, 4, 1, 2, 1, 8, 2, 4, 4, 0, 0, 0, 6, 8, 0, 8, 8, 7, 0, 1, 8, 3, 3, 1, 8, 0, 3, 5, 8, 9, 4, 8, 2, 0, 1, 2, 6, 8, 2, 8, 6, 0, 7, 5, 1, 5, 6, 0, 0, 0, 3, 3, 1, 5, 6, 8, 4, 8
Offset: 0

Views

Author

Keywords

Examples

			0.096983604158831067461685340459656680685516241218244000680887...
		

Crossrefs

Cf. A019774.

Programs

Formula

Equals A019774/17.

Extensions

a(0) = 0 prepended by Georg Fischer, Aug 25 2022
Previous Showing 31-40 of 63 results. Next