cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A114063 Numbers k such that phi(k) = tau(k)^4, where tau(k) = A000005(k).

Original entry on oeis.org

1, 17, 514, 8738, 32301, 33003, 36351, 41504, 42292, 43852, 51860, 62226, 549117, 561051, 571311, 599067, 617967, 629811, 634005, 657495, 673184, 674505, 683168, 701024, 705568, 718964, 722684, 732628, 745484, 759772, 774368
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Comments

For all large enough k, we have tau(k) < k^(1/5) and phi(k) > k^(4/5). Hence, tau(k)^4 < k^(4/5) < phi(k), implying that this sequence is finite. - Max Alekseyev, Mar 10 2016
Sequence is composed of 94030 terms. - Max Alekseyev, Jun 01 2024

Examples

			phi(33003) = 20736. tau(33003) = 12, 20736 = 12^4.
a(2) = A107655(4) = 17.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], EulerPhi[#] == DivisorSigma[0, #]^4 &] (* Paolo Xausa, May 31 2024 *)
  • PARI
    isok(n) = eulerphi(n) == numdiv(n)^4; \\ Michel Marcus, Jan 22 2014

A068559 Numbers m such that phi(m) = tau(m)^3.

Original entry on oeis.org

1, 85, 333, 436, 1542, 1875, 2907, 3285, 3488, 3796, 5196, 10280, 17532, 17776, 20080, 21250, 28305, 30368, 30555, 32708, 34748, 35308, 36860, 37060, 41544, 41568, 43068, 44004, 45162, 48468, 51930, 81324, 98304, 98688, 104856, 131070
Offset: 1

Views

Author

Benoit Cloitre, Mar 25 2002

Keywords

Comments

For all large enough k, we have tau(k) < k^(1/4) and phi(k) > k^(3/4). Hence, tau(k)^3 < k^(3/4) < phi(k), implying that this sequence is finite. In fact, the sequence consists of 614 terms. - Max Alekseyev, May 30 2024

Examples

			a(2) = A107655(3) = 85.
		

Crossrefs

Subsequence of A039771. - Enrique Pérez Herrero, Aug 29 2010

Programs

  • Mathematica
    Select[Range[132000],EulerPhi[#]==DivisorSigma[0,#]^3&]  (* Harvey P. Dale, Dec 28 2022 *)
  • PARI
    isok(m) = eulerphi(m) == numdiv(m)^3; \\ Michel Marcus, Oct 18 2019

A083245 Difference between numbers of related and numbers of unrelated numbers belonging to n: a(n) = A073757(n)-A045763(n) = (n-u(n))-u(n) = n-2*A045763(n) = 2*A073757(n)-n.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 6, 7, 4, 11, 6, 13, 4, 7, 8, 17, 4, 19, 6, 9, 4, 23, 6, 19, 4, 15, 6, 29, 0, 31, 10, 13, 4, 19, 4, 37, 4, 15, 6, 41, -4, 43, 6, 13, 4, 47, 2, 39, 0, 19, 6, 53, -4, 31, 6, 21, 4, 59, -6, 61, 4, 19, 12, 37, -12, 67, 6, 25, -8, 71, -2, 73, 4, 15, 6, 49, -16, 79, 2, 35, 4, 83, -14, 49, 4, 31, 6, 89, -20, 59, 6, 33, 4, 55, -10, 97, -4
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Comments

There are only 2 cases [n=30, n=50] below 10^7 such that a(n) = 0.
No other zeros found up to 10^9. - Michel Marcus, Jul 30 2017

Examples

			n=37, d=2,r=36,u=0, a(37)=2+36-1-0=37>0; primes are fixed points.
n=42, d=8,r=12,u=23,a(42)=8+12-1-23=-4<0, terms of A083244;
n=30, d=8,r=8,u=15, a(30)=0;
n=50, d=6,r=20,u=25,a(50)=0.
		

Crossrefs

Programs

  • Mathematica
    Table[2*(DivisorSigma[0, w]+EulerPhi[w]-1)-w, {w, 1, 1000}]
  • PARI
    a(n) = 2*(numdiv(n)+eulerphi(n)-1) - n; \\ Michel Marcus, Jul 30 2017

Formula

a(n) = 2(A000005(n)+A000010(n)-1)-n.

A279289 Numbers k such that phi(k) > tau(k).

Original entry on oeis.org

5, 7, 9, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Jaroslav Krizek, Dec 09 2016

Keywords

Comments

Numbers k such that A000010(k) > A000005(k).
There are 11 numbers k such that phi(k) <= tau(k) and 7 numbers k such that phi(k) = tau(k); see A020490 and A020488.
For k >= 31; phi(k) - tau(k) >= 1, see A063070.

Examples

			14 is a term because phi(14) = 6 > tau(14) = 4.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..1000] | EulerPhi(n) gt NumberOfDivisors(n)];
    
  • Mathematica
    Select[Range@ 77, EulerPhi@ # > DivisorSigma[0, #] &] (* Michael De Vlieger, Dec 11 2016 *)
  • PARI
    is(n) = eulerphi(n) > numdiv(n) \\ Felix Fröhlich, Dec 09 2016
    
  • PARI
    a(n)=if(n<20, select(k -> eulerphi(k)>numdiv(k), [5..29])[n], n+11) \\ Charles R Greathouse IV, Dec 16 2016

Formula

a(n) = n + 11 for n >= 20.

A289585 Quotients as they appear as k increases when tau(k) divides phi(k).

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 1, 5, 6, 2, 8, 1, 9, 3, 11, 1, 3, 2, 14, 1, 15, 5, 4, 6, 18, 6, 2, 20, 21, 4, 23, 14, 8, 4, 26, 10, 3, 9, 7, 29, 30, 6, 12, 33, 11, 3, 35, 2, 36, 9, 6, 15, 3, 39, 10, 41, 2, 16, 14, 5, 44, 2, 18, 15, 18, 48, 7, 10, 50, 4, 51, 6, 6, 13, 53, 3, 54, 5, 18, 56, 22, 12, 24, 2
Offset: 1

Views

Author

Bernard Schott, Jul 08 2017

Keywords

Comments

Numbers k such that tau(k) divides phi(k) are in A020491.
Only for seven integers which are in A020488, we have a(n) = 1.
The integers such that a(n) = 2, 3, 4 are respectively in A062516, A063469, A063470.
When p is an odd prime then phi(p) = p-1, tau(p) = 2, so phi(p)/tau(p) = (p-1)/2 and A005097 is an infinite subsequence.
For k = A058891(m+1), that is 2^A000225(m), with m>=2, the corresponding quotient phi(k)/tau(k) is the integer A076688(m). - Bernard Schott, Aug 15 2020

Examples

			a(10) = 2 because A020491(10) = 15 and phi(15)/tau(15) = 8/4 = 2.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 50 do q:=phi(n)/tau(n);
    if q=floor(q) then print(n,q,phi(n),tau(n)) else fi; od:
  • Mathematica
    f[n_] := Block[{d = EulerPhi[n]/DivisorSigma[0, n]}, If[ IntegerQ@d, d, Nothing]]; Array[f, 120] (* Robert G. Wilson v, Jul 09 2017 *)
  • PARI
    lista(nn) = {for (n=1, nn, q = eulerphi(n)/numdiv(n); if (denominator(q)==1, print1(q, ", ")););} \\ Michel Marcus, Jul 10 2017

Formula

a(n) = A000010(A020491(n)) / A000005(A020491(n)). - David A. Corneth, Jul 09 2017

A083246 Numbers n such that at least one of the following four conditions is satisfied: 1# d(n)=phi(n); 2# d(n)=u(n); 3# phi(n)=u(n), or 4# n=2u(n). Here d(n)=A000005(n) is the number of divisors of n, phi(n)=A000010(n) is Euler's totient and u(n)=A045763(n) is the size of the 'unrelated set'.

Original entry on oeis.org

1, 3, 8, 10, 15, 18, 24, 25, 30, 50, 61455
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Comments

Is this sequence complete?

Examples

			1# d(n)=phi(n) holds for {1,3,8,10,18,24,30}, see A020488;
2# d(n)=u(n) holds for {15,25};
3# phi(n)=u(n) holds for {61455};
4# n=2u(n) holds for {30,50}. No more cases below 10^7.
{n,d,r,u} values for 11 initial terms are as follows:
{1, 1, 1, 0}, {3, 2, 2, 0}, {8, 4, 4, 1}, {10, 4, 4, 3}, {15, 4, 8, 4}, {18, 6, 6, 7}{24, 8, 8, 9}, {25, 3, 20, 3}, {30, 8, 8, 15}, {50, 6, 20, 25}, {61455, 16, 30720, 30720}.
		

Crossrefs

Programs

  • Mathematica
    Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; If[Equal[d, r]||Equal[d, u]||Equal[r, u]||Equal[u, n-u], Print[n(*, {d, r, u}*)]], {n, 1, 10000000}]
  • PARI
    is(n)=my(r=eulerphi(n),d=numdiv(n),u=n-r-d+1);d==r||d==u||r==u||2*u==n \\ Charles R Greathouse IV, Feb 21 2013

A279287 a(n) = numerator of (phi(n)/tau(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 1, 2, 1, 5, 2, 6, 3, 2, 8, 8, 1, 9, 4, 3, 5, 11, 1, 20, 3, 9, 2, 14, 1, 15, 8, 5, 4, 6, 4, 18, 9, 6, 2, 20, 3, 21, 10, 4, 11, 23, 8, 14, 10, 8, 4, 26, 9, 10, 3, 9, 7, 29, 4, 30, 15, 6, 32, 12, 5, 33, 16, 11, 3, 35, 2, 36, 9, 20, 6, 15, 3
Offset: 1

Views

Author

Jaroslav Krizek, Dec 09 2016

Keywords

Comments

a(n) = numerator of (A000010(n)/A000005(n)).
See A279288 (denominator of (phi(n)/tau(n))) and A063070 (phi(n)-tau(n)).
a(n) = 1 and A279288(n) = 1 for numbers n in A020488; a(n) > A279288(n) for numbers n in A279289.

Examples

			For n = 6: phi(6)/tau(6) = 2/4 = 1/2; a(6) = 1.
		

Crossrefs

Programs

  • Magma
    [Numerator(EulerPhi(n)/NumberOfDivisors(n)): n in[1..1000]];
    
  • Maple
    with(numtheory): A279287:=n->numer(phi(n)/sigma(n)): seq(A279287(n), n=1..150); # Wesley Ivan Hurt, Dec 11 2016
  • Mathematica
    Table[Numerator[EulerPhi[n]/DivisorSigma[0, n]], {n, 78}] (* Michael De Vlieger, Dec 09 2016 *)
  • PARI
    a(n) = numerator(eulerphi(n)/numdiv(n)) \\ Felix Fröhlich, Dec 09 2016

A279288 a(n) = denominator of (phi(n)/tau(n)).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Dec 09 2016

Keywords

Comments

a(n) = denominator of (A000010(n)/A000005(n)).
See A279287 (numerator of (phi(n)/tau(n))) and A063070 (phi(n)-tau(n)).
a(n) = 1 and A279287(n) = 1 for numbers n in A020488; A279287(n) > a(n) for numbers n in A279289.

Examples

			For n = 6: phi(6)/tau(6) = 2/4 = 1/2; a(6) = 2.
		

Crossrefs

Programs

  • Magma
    [Denominator(EulerPhi(n)/NumberOfDivisors(n)): n in[1..1000]];
    
  • Mathematica
    Table[Denominator[EulerPhi[n]/DivisorSigma[0, n]], {n, 120}] (* Michael De Vlieger, Dec 10 2016 *)
  • PARI
    a(n) = denominator(eulerphi(n)/numdiv(n)) \\ Felix Fröhlich, Dec 09 2016

Formula

a(n) = 1 for numbers in A020491.

A289276 Numbers k such that phi(k) (the totient function A000010) is a power of the number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 3, 5, 8, 10, 17, 18, 24, 30, 34, 63, 76, 85, 128, 136, 170, 257, 315, 333, 364, 380, 436, 444, 514, 640, 680, 972, 1285, 1542, 1820, 1824, 1836, 1875, 2142, 2220, 2907, 3285, 3488, 3796, 4369, 4788, 4860
Offset: 1

Views

Author

Keywords

Comments

A019434 is a subsequence. - David A. Corneth, Jun 30 2017
Is the frequency of e such that A000005(a(n))^e = A000010(a(n)) finite? - David A. Corneth, Jul 01 2017

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[2,5000],IntegerQ[Log[DivisorSigma[0,#],EulerPhi[#]]]&]] (* Harvey P. Dale, Aug 06 2017 *)
  • PARI
    ispowerof(n, k)= if(k==1, return(n==1)); while(n>=k, if(n%k!=0, return(0)); n\=k); n==1
    isa(n) = ispowerof(eulerphi(n),numdiv(n)) \\ Quick program, fast enough for early values.
    
  • PARI
    is(n) = if(n==1, return(1)); my(f = factor(n); phi = eulerphi(f), ndiv = numdiv(f), e = logint(phi, ndiv)); ndiv^e == phi \\ David A. Corneth, Jun 30 2017, changed per suggestion of Charles R Greathouse IV
    
  • PARI
    isA289276(n)= if(n==1, return(1)); my(phi = eulerphi(n), ndiv = numdiv(n), v = valuation(phi, ndiv)); ndiv^v == phi; \\ (A variant of above program). - Antti Karttunen, Jun 30 2017
    
  • PARI
    list(lim)=my(v=List([1])); forfactored(n=2,lim\1, my(phi = eulerphi(n), ndiv = numdiv(n)); if(ndiv^valuation(phi,ndiv) == phi, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jul 01 2017

A112587 Numbers m such that phi(m) <= 2*tau(m), where phi=A000010 and tau=A000005.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 28, 30, 36, 40, 42, 48, 60, 72, 84, 90, 120
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 14 2005

Keywords

Comments

Complement of A112588.

Crossrefs

Cf. A020488.

Programs

Previous Showing 11-20 of 33 results. Next