cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 105 results. Next

A020883 Ordered long legs of primitive Pythagorean triangles.

Original entry on oeis.org

4, 12, 15, 21, 24, 35, 40, 45, 55, 56, 60, 63, 72, 77, 80, 84, 91, 99, 105, 112, 117, 120, 132, 140, 143, 144, 153, 156, 165, 168, 171, 176, 180, 187, 195, 208, 209, 220, 221, 224, 231, 240, 247, 252, 253, 255, 260, 264, 272, 273, 275, 285, 288, 299, 304, 308, 312, 323
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A < B); sequence gives values of B, sorted.
Any term in this sequence is given by f(m,n) = 2*m*n or g(m,n) = m^2 - n^2 where m and n are any two positive integers, m > 1, n < m, the greatest common divisor of m and n is 1, m and n are not both odd; e.g., f(m,n) = f(2,1) = 2*2*1 = 4. - Agola Kisira Odero, Apr 29 2016
All terms are composite. - Thomas Ordowski, Mar 12 2017
a(1) is the only power of 2. - Torlach Rush, Nov 08 2019
The first term appearing twice is 420 = a(75) = a(76) = A024410(1). - Giovanni Resta, Nov 11 2019
From Bernard Schott, May 05 2021: (Start)
Also, ordered sides a of primitive triples (a, b, c) for integer-sided triangles where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c.
Example: a(2) = 12, because the second triple is (12, 10, 15) with side a = 12, satisfying 2/12 = 1/10 + 1/15 and 15-12 < 10 < 15+12.
The first term appearing twice 420 corresponds to triples (420, 310, 651) and (420, 406, 435), the second one is 572 = a(101) = a(102) = A024410(2) and corresponds to triples (572, 407, 962) and (572, 455, 770). The terms that appear more than once in this sequence are in A024410.
For the corresponding primitive triples and miscellaneous properties and references, see A343891. (End)

References

  • V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-337 p. 179, André Desvigne.

Crossrefs

Triangles with 2/a = 1/b + 1/c: A343891 (triples), A020883 (side a), A343892 (side b), A343893 (side c), A343894 (perimeter).

Programs

  • Maple
    for a from 4 to 325 do
    for b from floor(a/2)+1 to a-1 do
    c := a*b/(2*b-a);
    if c=floor(c) and igcd(a,b,c)=1 and c-bBernard Schott, May 05 2021

Extensions

Extended and corrected by David W. Wilson

A020884 Ordered short legs of primitive Pythagorean triangles.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 20, 21, 23, 24, 25, 27, 28, 28, 29, 31, 32, 33, 33, 35, 36, 36, 37, 39, 39, 40, 41, 43, 44, 44, 45, 47, 48, 48, 49, 51, 51, 52, 52, 53, 55, 56, 57, 57, 59, 60, 60, 60, 61, 63, 64, 65, 65, 67, 68, 68, 69, 69, 71, 72, 73, 75, 75, 76, 76, 77
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives values of A, sorted.
Union of A081874 and A081925. - Lekraj Beedassy, Jul 28 2006
Each term in this sequence is given by f(m,n) = m^2 - n^2 or g(m,n) = 2mn where m and n are relatively prime positive integers with m > n, m and n not both odd. For example, a(1) = f(2,1) = 2^2 - 1^2 = 3 and a(4) = g(4,1) = 2*4*1 = 8. - Agola Kisira Odero, Apr 29 2016
All powers of 2 greater than 4 (2^2) are terms, and are generated by the function g(m,n) = 2mn. - Torlach Rush, Nov 08 2019

Crossrefs

Cf. A009004, A020882, A020883, A020885, A020886. Different from A024352.
Cf. A024359 (gives the number of times n occurs).
Cf. A037213.

Programs

  • Haskell
    a020884 n = a020884_list !! (n-1)
    a020884_list = f 1 1 where
       f u v | v > uu `div` 2        = f (u + 1) (u + 2)
             | gcd u v > 1 || w == 0 = f u (v + 2)
             | otherwise             = u : f u (v + 2)
             where uu = u ^ 2; w = a037213 (uu + v ^ 2)
    -- Reinhard Zumkeller, Nov 09 2012
  • Mathematica
    shortLegs = {}; amx = 99; Do[For[b = a + 1, b < (a^2/2), c = (a^2 + b^2)^(1/2); If[c == IntegerPart[c] && GCD[a, b, c] == 1, AppendTo[shortLegs, a]]; b = b + 2], {a, 3, amx}]; shortLegs (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)
    Take[Union[Sort/@({Times@@#,(Last[#]^2-First[#]^2)/2}&/@(Select[Subsets[Range[1,101,2],{2}],GCD@@#==1&]))][[;;,1]],80] (* Harvey P. Dale, Feb 06 2025 *)

Extensions

Extended and corrected by David W. Wilson

A058529 Numbers whose prime factors are all congruent to +1 or -1 modulo 8.

Original entry on oeis.org

1, 7, 17, 23, 31, 41, 47, 49, 71, 73, 79, 89, 97, 103, 113, 119, 127, 137, 151, 161, 167, 191, 193, 199, 217, 223, 233, 239, 241, 257, 263, 271, 281, 287, 289, 311, 313, 329, 337, 343, 353, 359, 367, 383, 391, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487
Offset: 1

Views

Author

William Bagby (bagsbee(AT)aol.com), Dec 24 2000

Keywords

Comments

Numbers of the form x^2 - 2*y^2, where x is odd and x and y are relatively prime. - Franklin T. Adams-Watters, Jun 24 2011
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1, a <= b); sequence gives values b-a, sorted with duplicates removed; terms > 1 in sequence give values of a + b, sorted. (See A046086 and A046087.)
Ordered set of (semiperimeter + radius of largest inscribed circle) of all primitive Pythagorean triangles. Semiperimeter of Pythagorean triangle + radius of largest circle inscribed in triangle = ((a+b+c)/2) + ((a+b-c)/2) = a + b.
The terms of this sequence are all of the form 6*N +- 1, since the prime divisors are, and numbers of this form are closed under multiplication. In fact, all terms are == 1, 7, 17, or 23 (mod 24). - J. T. Harrison (harrison_uk_2000(AT)yahoo.co.uk), Apr 28 2009, edited by Franklin T. Adams-Watters, Jun 24 2011
Is similar to A001132, but includes composites whose factors are in A001132. Can be generated in this manner.
Third side of primitive parallepipeds with square base; that is, integer solution of a^2 + b^2 + c^2 = d^2 with gcd(a,b,c) = 1 and b = c. - Carmine Suriano, May 03 2013
Other than -1, values of difference z-y that solve the Diophantine equation x^2 + y^2 = z^2 + 2. - Carmine Suriano, Jan 05 2015
For k > 1, k is in the sequence iff A330174(k) > 0. - Ray Chandler, Feb 26 2020

References

  • B Berggren, Pytagoreiska trianglar. Tidskrift för elementär matematik, fysik och kemi, 17:129-139, 1934.
  • Olaf Delgado-Friedrichs and Michael O’Keeffe, Edge-transitive lattice nets, Acta Cryst. (2009). A65, 360-363.

Crossrefs

Programs

  • Haskell
    a058529 n = a058529_list !! (n-1)
    a058529_list = filter (\x -> all (`elem` (takeWhile (<= x) a001132_list))
                                     $ a027748_row x) [1..]
    -- Reinhard Zumkeller, Jan 29 2013
    
  • Mathematica
    Select[Range[500], Union[Abs[Mod[Transpose[FactorInteger[#]][[1]], 8, -1]]] == {1} &] (* T. D. Noe, Feb 07 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,1]%8); for(i=1,#f, if(f[i]!=1 && f[i]!=7, return(0))); 1 \\ Charles R Greathouse IV, Aug 01 2016

Formula

a(n) = |A-B|=|j^2-2*k^2|, j=(2*n-1), k,n in N, GCD(j,k)=1, the absolute difference between primitive Pythagorean triple legs (sides adjacent to the right angle). - Roger M Ellingson, Dec 09 2023

Extensions

More terms from Naohiro Nomoto, Jul 02 2001
Edited by Franklin T. Adams-Watters, Jun 24 2011
Duplicated comment removed and name rewritten by Wolfdieter Lang, Feb 17 2015

A020886 Ordered semiperimeters of primitive Pythagorean triangles.

Original entry on oeis.org

6, 15, 20, 28, 35, 42, 45, 63, 66, 72, 77, 88, 91, 99, 104, 110, 117, 120, 130, 143, 153, 156, 165, 170, 187, 190, 195, 204, 209, 210, 221, 228, 231, 238, 247, 255, 266, 272, 273, 276, 285, 299, 304, 322, 323, 325, 336, 342, 345, 350, 357, 368, 378, 391, 399
Offset: 1

Views

Author

Keywords

Comments

k is in this sequence iff A078926(k) > 0.
Also, ordered sides c of primitive triples (a, b, c) for integer-sided triangles where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c (A343893). - Bernard Schott, May 06 2021
a(n) are the ordered radii of inscribed circles in squares, from which the tangents to the circles are cut off by primitive Pythagorean triangles. - Alexander M. Domashenko, Oct 17 2024

Crossrefs

Subsequence of A005279.
Triangles with 2/a = 1/b + 1/c: A343891 (triples), A020883 (side a), A343892 (side b), A343893 (side c), A343894 (perimeter).

Programs

  • Maple
    isA020886 := proc(an) local r::integer,s::integer ; for r from floor((an/2)^(1/2)) to floor(an^(1/2)) do for s from r-1 to 1 by -2 do if r*(r+s) = an and gcd(r,s) < 2 then RETURN(true) ; fi ; if r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : for n from 2 to 400 do if isA020886(n) then printf("%d,",n) ; fi ; od ; # R. J. Mathar, Jun 08 2006
  • Mathematica
    A078926[n_] := Sum[Boole[n < d^2 < 2n && CoprimeQ[d, n/d]], {d, Divisors[ n/2^IntegerExponent[n, 2]]}];
    Select[Range[1000], A078926[#]>0&] (* Jean-François Alcover, Mar 23 2020 *)
  • PARI
    is(n,f=factor(n))=my(P=apply(i->f[i,1]^f[i,2],[2-n%2..#f~]),nn=2*n); forvec(v=vector(#P,i,[0,1]), my(d=prod(i=1,#v,P[i]^v[i]),d2=d^2); if(d2n, return(1))); 0
    list(lim)=my(v=List()); forfactored(n=6,lim\1, if(is(n[1],n[2]), listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Feb 03 2023

Formula

a(n) = A024364(n)/2.

A046087 Middle member 'b' of the primitive Pythagorean triples (a,b,c) ordered by increasing c, then b.

Original entry on oeis.org

4, 12, 15, 24, 21, 35, 40, 45, 60, 56, 63, 55, 77, 84, 80, 72, 99, 91, 112, 117, 105, 143, 144, 140, 132, 120, 165, 180, 153, 176, 168, 195, 156, 187, 171, 220, 221, 208, 209, 255, 247, 264, 260, 252, 231, 240, 285, 224, 273, 312, 308, 253, 323, 288, 299, 272
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    maxHypo = 389; r[b_, c_] := Reduce[0 < a <= b < c && a^2 + b^2 == c^2, a, Integers]; Reap[Do[r0 = r[b, c]; If[r0 =!= False, {a0, b0, c0} = {a, b, c} /. ToRules[r0]; If[GCD[a0, b0, c0] == 1, Print[b0]; Sow[b0]]], {c, 1, maxHypo}, {b, 1, maxHypo}]][[2, 1]] (* Jean-François Alcover, Oct 22 2012 *)

A046086 Smallest member 'a' of the primitive Pythagorean triples (a,b,c) ordered by increasing c, then b.

Original entry on oeis.org

3, 5, 8, 7, 20, 12, 9, 28, 11, 33, 16, 48, 36, 13, 39, 65, 20, 60, 15, 44, 88, 24, 17, 51, 85, 119, 52, 19, 104, 57, 95, 28, 133, 84, 140, 21, 60, 105, 120, 32, 96, 23, 69, 115, 160, 161, 68, 207, 136, 25, 75, 204, 36, 175, 180, 225, 76, 27, 252, 152, 135, 189
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    maxHypo = 389; r[b_, c_] := Reduce[0 < a <= b < c && a^2 + b^2 == c^2, a, Integers]; Reap[Do[r0 = r[b, c]; If[r0 =!= False, {a0, b0, c0} = {a, b, c} /. ToRules[r0]; If[GCD[a0, b0, c0] == 1, Print[a0]; Sow[a0]]], {c, 1, maxHypo}, {b, 1, maxHypo}]][[2, 1]] (* Jean-François Alcover, Oct 22 2012 *)

A024362 Number of primitive Pythagorean triangles with hypotenuse n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times C takes value n.
a(A137409(n)) = 0; a(A008846(n)) > 0; a(A120960(n)) = 1; a(A024409(n)) > 1; a(A159781(n)) = 4. - Reinhard Zumkeller, Dec 02 2012
If the formula given below is used one is sure to find all a(n) values for hypotenuses n <= N if the summation indices r and s are cut off at rmax(N) = floor((sqrt(N-4)+1)/2) and smax(N) = floor(sqrt(N-1)/2). a(n) is the number of primitive Pythagorean triples with hypotenuse n modulo catheti exchange. - Wolfdieter Lang, Jan 10 2016

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 116-117, 1966.

Crossrefs

Programs

  • Haskell
    a024362 n = sum [a010052 y | x <- takeWhile (< nn) $ tail a000290_list,
                                 let y = nn - x, y <= x, gcd x y == 1]
                where nn = n ^ 2
    -- Reinhard Zumkeller, Dec 02 2012
    
  • Maple
    f:= proc(n) local F;
       F:= numtheory:-factorset(n);
       if map(t -> t mod 4, F) <> {1} then return 0 fi;
       2^(nops(F)-1)
    end proc:
    seq(f(n),n=1..100); # Robert Israel, Jan 11 2016
  • Mathematica
    Table[a0=IntegerExponent[n,2]; If[n==1 || a0>0, cnt=0, m=n/2^a0; p=Transpose[FactorInteger[m]][[1]]; c=Count[p, _?(Mod[#,4]==1 &)]; If[c==Length[p], cnt=2^(c-1), 0]]; cnt, {n,100}]
    a[n_] := If[n==1||EvenQ[n]||Length[Select[FactorInteger[n], Mod[#[[1]], 4]==3 &]] >0, 0, 2^(Length[FactorInteger[n]]-1)]; Array[a, 100] (* Frank M Jackson, Jan 28 2018 *)
  • PARI
    a(n)={my(m=0,k=n,n2=n*n,k2,l2);
    while(1,k=k-1;k2=k*k;l2=n2-k2;if(l2>k2,break);if(issquare(l2),if(gcd(n,k)==1,m++)));  return(m);} \\ Stanislav Sykora, Mar 23 2015

Formula

a(n) = [q^n] T(q), n >= 1, where T(q) = Sum_{r>=1,s>=1} rpr(2*r-1, 2*s)*q^c(r,s), with rpr(k,l) = 1 if gcd(k,l) = 1, otherwise 0, and c(r,s) = (2*r-1)^2 + (2s)^2. - Wolfdieter Lang, Jan 10 2016
If all prime factors of n are in A002144 then a(n) = 2^(A001221(n)-1), otherwise a(n) = 0. - Robert Israel, Jan 11 2016
a(4*n+1) = A106594(n), other terms are 0. - Andrey Zabolotskiy, Jan 21 2022

A222946 Triangle for hypotenuses of primitive Pythagorean triangles.

Original entry on oeis.org

5, 0, 13, 17, 0, 25, 0, 29, 0, 41, 37, 0, 0, 0, 61, 0, 53, 0, 65, 0, 85, 65, 0, 73, 0, 89, 0, 113, 0, 85, 0, 97, 0, 0, 0, 145, 101, 0, 109, 0, 0, 0, 149, 0, 181, 0, 125, 0, 137, 0, 157, 0, 185, 0, 221, 145, 0, 0, 0, 169, 0, 193, 0, 0, 0, 265, 0, 173, 0, 185, 0, 205, 0, 233, 0, 269, 0, 313, 197, 0, 205, 0, 221, 0, 0, 0, 277, 0, 317, 0, 365
Offset: 2

Views

Author

Wolfdieter Lang, Mar 21 2013

Keywords

Comments

For primitive Pythagorean triples (x,y,z) see the Niven et al. reference, Theorem 5.5, p. 232, and the Hardy-Wright reference, Theorem 225, p. 190.
Here a(n,m) = 0 for non-primitive Pythagorean triangles.
There is a one-to-one correspondence between the values n and m of this number triangle for which a(n,m) does not vanish and primitive solutions of x^2 + y^2 = z^2 with y even, namely x = n^2 - m^2, y = 2*n*m and z = n^2 + m^2.
The diagonal sequence is given by a(n,n-1) = A001844(n-1), n >= 2.
The row sums of this triangle are 5, 13, 42, 70, 98, 203, 340, 327, 540, ...
a(n,k) = A055096(n-1,k) * ((n+k) mod 2) * A063524 (gcd(n,k)): terms in A055096 that are not hypotenuses in primitive Pythagorean triangles, are replaced by 0. - Reinhard Zumkeller, Mar 23 2013
The number of non-vanishing entries in row n is A055034(n). - Wolfdieter Lang, Mar 24 2013
The non-vanishing entries when ordered according to nondecreasing leg sums x+y (see A225949 and A198441) produce (with multiplicities) A198440. - Wolfdieter Lang, May 22 2013
a(n, m) also gives twice the member s(n, m) of the triple (r(n, m), s(n, m), t(n, m)) with squares r(n, m)^2, s(n, m)^2 and t(n, m)^2 in arithmetic progression with common difference A(n, m) = A249869(n, m), the area of the primitive Pythagorean triangle, or 0 if there is no such triangle. The other members are given by 2*r(n, m) = A278717(n, m) and 2*t(n, m) = A225949(n, m). See A278717 for details and the Keith Conrad reference there. - Wolfdieter Lang, Nov 30 2016

Examples

			The triangle a(n,m) begins:
n\m   1   2   3   4   5   6   7   8   9  10  11  12   13 ...
2:    5
3:    0  13
4:   17   0  25
5:    0  29   0  41
6:   37   0   0   0  61
7:    0  53   0  65   0  85
8:   65   0  73   0  89   0 113
9:    0  85   0  97   0   0   0 145
10: 101   0 109   0   0   0 149   0 181
11:   0 125   0 137   0 157   0 185   0 221
12: 145   0   0   0 169   0 193   0   0   0 265
13:   0 173   0 185   0 205   0 233   0 269   0 313
14: 197   0 205   0 221   0   0   0 277   0 317   0  365
...
------------------------------------------------------------
a(7,4) = 7^2 + 4^2 = 49 + 16 = 65.
a(8,1) = 8^2 + 1^2 = 64 +  1 = 65.
a(3,1) = 0 because n and m are both odd.
a(4,2) = 0 because n and m are both even.
a(6,3) = 0 because gcd(6,3) = 3 (not 1).
The primitive triangle for (n,m) = (2,1) is (x,y,z) = (3,4,5).
The primitive triangle for (n,m) = (7,4) is (x,y,z) = (33,56,65).
The primitive triangle for (n,m) = (8,1) is (x,y,z) = (63,16,65).
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.

Crossrefs

Cf. A020882 (ordered nonzero values a(n,m) with multiplicity).
Cf. A249866, A225950 (odd legs), A225951 (perimeters), A225952 (even legs), A225949 (leg sums), A249869 (areas), A258149 (absolute leg differences), A278717 (leg differences).

Programs

  • Haskell
    a222946 n k = a222946_tabl !! (n-2) !! (k-1)
    a222946_row n = a222946_tabl !! (n-2)
    a222946_tabl = zipWith p [2..] a055096_tabl where
       p x row = zipWith (*) row $
                 map (\k -> ((x + k) `mod` 2) * a063524 (gcd x k)) [1..]
    -- Reinhard Zumkeller, Mar 23 2013

Formula

a(n,m) = n^2 + m^2 if n > m >= 1, gcd(n,m) = 1, and n and m are integers of opposite parity (i.e., (-1)^(n+m) = -1), otherwise a(n,m) = 0.

A096891 Least hypotenuse of primitive Pythagorean triangles with odd leg 2n+1.

Original entry on oeis.org

5, 13, 25, 41, 61, 85, 17, 145, 181, 29, 265, 313, 365, 421, 481, 65, 37, 685, 89, 841, 925, 53, 1105, 1201, 149, 1405, 73, 185, 1741, 1861, 65, 97, 2245, 269, 2521, 2665, 317, 85, 3121, 3281, 3445, 157, 425, 3961, 109, 485, 193, 4705, 101, 5101, 5305, 137
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Comments

Ordered terms are A020882. - Paul Curtz, Sep 08 2008
Least value of x^2 + y^2 with gcd(x,y) = 1 such that y^2 - x^2 = 2n+1. - Thomas Ordowski, Apr 02 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[c = Sqrt[(2n + 1)^2 + k^2]; ! IntegerQ@ c || GCD[2n + 1, c, k] > 1, k += 2]; c]; Array[f, 52] (* Robert G. Wilson v, Mar 18 2014 *)

A096910 Primitive Pythagorean Quadruples a^2+b^2+c^2=d^2, 0

Original entry on oeis.org

3, 7, 9, 9, 11, 11, 13, 15, 15, 17, 17, 19, 19, 19, 21, 21, 21, 21, 23, 23, 23, 25, 25, 27, 27, 27, 27, 27, 29, 29, 29, 31, 31, 31, 31, 33, 33, 33, 33, 33, 33, 33, 35, 35, 35, 35, 37, 37, 37, 37, 39, 39, 39, 39, 39, 39, 41, 41, 41, 41, 41, 43, 43, 43, 43, 43, 43, 45, 45, 45
Offset: 1

Views

Author

Ray Chandler, Aug 15 2004

Keywords

Comments

Sequence with repetitions removed is A005818. - Ivan Neretin, May 24 2015

Crossrefs

Cf. A096907, A096908, A096909 (other components of the quadruple), A046086, A046087, A020882 (Pythagorean triples ordered in a similar way).

Programs

  • Mathematica
    mx = 50; res = {}; Do[If[GCD[b, c, d] > 1, Continue[]]; If[IntegerQ[a = Sqrt[d^2 - b^2 - c^2]] && a > 0 && a <= b, AppendTo[res, {a, b, c, d}]], {d, mx}, {c, d}, {b, c}]; res[[All, 4]] (* Ivan Neretin, May 24 2015 *)
Previous Showing 11-20 of 105 results. Next